K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2022

loading...

a) xét ΔOCB và ΔODA, ta có :

OA = OB (giả thiết)

\(\widehat{O}\) là góc chung

AC = BD (giả thiết)

⇒ ΔOCB = ΔODA (c.g.c)

⇒ AC = BD (2 cạnh tương ứng)

b) xét ΔEAC và ΔEBD, ta có : 

AD = BC (câu a)

\(\widehat{AEC}=\widehat{BED}\) (vì là 2 góc đối đỉnh) 

AC = BD (giả thiết)

⇒ ΔEAC = ΔEBD (C.G.C)

c) xét ΔOAE và ΔOBE, ta có :

OA = OB (giả thiết)

AE = BE [vì ΔEAC = ΔEBD (2 cạnh tương ứng)]

OE là cạnh chung

⇒ ΔOAE = ΔOBE (c.c.c)

⇒ \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

a.OC=OA+AC

OD=OB+BD
mà OA=OB(gt);AC=BD(gt)

=>OC=OD

Xét tam giác OAD và tam giác OBC có:OA=OB(gt)

                                                                góc O chung

                                                                OD=OC(cmt)

                                                      =>tam giác OAD=tam giác OBC(c.g.c)=>AD=BC(hai cạnh tương ứng)(đpcm)

b.tam giác OAD=tam giác OBC(câu a)=>góc OAD=góc OBC(hai góc tương ứng)

                                                                 góc ODA=góc OCB(hai góc tương ứng) hay góc BDE=góc ACE

góc OAD+góc DAC=180 độ (hai góc kề bù)

góc OBC+góc CBD=180 độ (hai góc kề bù)

=>góc DAC=góc CBD hay góc EAC=góc EBD

Xét tam giác EAC và tam giác EBD có:

Góc ACE=góc BDE(cmt)

AC=BD(gt)

góc EAC=góc EBD(cmt)

=>tam giác EAC=tam giác EBD(g.c.g)(đpcm)

c.tam giác EAC=tam giác EBD(câu b)=>EC=ED(hai cạnh tương ứng)

Xét tam giác OEC và tam giác OED có:

OC=OD(câu a)

EC=ED(cmt)

OE chung

=>tam giác OEC=tam giác OED(c.c.c)

=>góc EOC=góc EOD(hai góc tương ứng)=>OE là phân giác góc COD hay OE là phân giác góc xOy (đpcm)

31 tháng 12 2021

undefined

16 tháng 12 2016

O y A B D C x

16 tháng 12 2016

Hình vẽ trên òn đây là bài làm:

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

\(\widehat{O}\) góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> \(\widehat{D}=\widehat{C}\)\(\widehat{A_1}=\widehat{B_1}\) (2 góc tương ứng)

\(\widehat{A_1}+\widehat{A_2}=\widehat{B_1}+\widehat{B_2}\)= 1800 (kề bù)

=> \(\widehat{A_2}=\widehat{B_2}\)

Δ EAC và Δ EBD có:

\(\widehat{C}=\widehat{D}\) (cmt)

AC=BD (gt)

\(\widehat{A_2}=\widehat{B_2}\) (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

\(\widehat{B_1}=\widehat{A_1}\) (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc tương ứng)

Vậy OE là phân giác \(\widehat{xOy}\).

 

 

Hình tự vẽ nha

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

 \(\Rightarrow\widehat{OCB}=\widehat{ODA},\widehat{OBC}=\widehat{OAD}\)( cặp góc tượng ứng)

Có:\(\widehat{OAD}+\widehat{DAC}=180^o\)

\(\widehat{OBC}+\widehat{CBD}=180^o\)

Mà:\(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)

\(\Rightarrow\widehat{DAC}=\widehat{CBD}\)

Xét ΔEAC và ΔEBD có

\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)

AC=BD(gt)

\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

 \(\Rightarrow\widehat{EOC}=\widehat{EOD}\)

=> OE là tia pg của \(\widehat{xOy}\)

2 tháng 1 2021

O x y A B C D E

a, Ta có : OD = OB + BD 

OC = OA + AC

Mà OA = OB ( gt ) và AC = BD ( gt )

=> OC = OD 

Xét tam giác OAD và tam giác OBC 

^O chung 

OC = OD ( cmt )

OA = OB ( gt )

=> tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC ( 2 cạnh tương ứng )

Vì OAD = OBC ( cmt )

=> ^D = ^C và ^A = ^B ( 2 góc tương ứng )

Mà ^OAD + ^CAD = ^OBC + ^DBC = 1800 ( kề bù )

=> ^DBC = ^CAD 

Xét tam giác EAC và tam giác EBD ta có : 

^C = ^D ( cmt )

AC = BD ( gt )

^DBC = ^CAD ( cmt )

=> tam giác EAC = tam giác EBD ( g.c.g )