K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://hoc24.vn/cau-hoi/cho-goc-nhon-xoy-lay-diem-ab-thuoc-tia-ox-sao-cho-oa-ob-lay-diem-cd-thuoc-tia-oy-sao-cho-oaob-lay-diem-c-d-thuoc-tia-oy-sao-cho-ocoa-od.7621651044223

có ng trả lời cho bn rùi mà

17 tháng 2 2023

nhưng thiếc ý c

a: Xét ΔOAD và ΔOCB có

OA=OC

góc AOD chung

OD=OB

=>ΔOAD=ΔOCB

=>AD=CB

b: Xét ΔEAB và ΔECD có

góc EAB=góc ECD

AB=CD

góc EBA=góc EDC

=>ΔEAB=ΔECD

c: Xét ΔOAE và ΔOCE có

OA=OC

AE=CE
OE chung

=>ΔOAE=ΔOCE

=>góc AOE=góc COE

=>góc AOM=góc CON

Xét ΔCON và ΔAOM có

góc CON=góc AOM

CO=AO

góc OCN=góc OAM

=>ΔCON=ΔAOM

=>ON=OM

=>ΔENM can tại E

=>EM=EN

=>NC=MA

Xét ΔEMB và ΔEND có

EM=EN

góc MEB=góc NED

EB=ED

=>ΔEMB=ΔEND

=>ND=MB và góc EMB=góc END

=>góc KMO=góc KNO

=>ΔKMN cân tại K

KD+DN=KN

KB+BM=KM

mà KM=KN; DN=BM

nên KD=KB

=>K nằm trên trung trực của DB(1)

OB=OD

nên O nằm trên trung trực của DB(2)

EB=ED

nên E nằm trên trung trực của DB(3)

Từ (1), (2), (3) suy ra O,E,K thẳng hàng

21 tháng 9 2023

Tham khảo:

a) Xét \(\Delta OAD\) và \(\Delta OCB\), ta có :

OD = OB

\(\widehat{A}\) chung

OA = OC 

\(\Rightarrow \Delta OAD=\Delta OCB\) (c-g-c )

\( \Rightarrow AD = BC\)(2 cạnh tương ứng )

b) Vì \(\Delta OAD=\Delta OCB\) nên \(\widehat{OAD}=\widehat{OCB}; \widehat{D}=\widehat{B}\) ( 2 góc tương ứng)

Mà \(\widehat{OAD}+\widehat{BAD}=180^0\) ( 2 góc kề bù)

\(\widehat{OCB}+\widehat{BCD}=180^0\) ( 2 góc kề bù)

Do đó, \(\widehat{BAD}=\widehat{BCD}\)

Vì \(OA+AB=OB; OC+CD=OD\)

Mà \(OC = OA, OD = OB\)

\(\Rightarrow AB=CD\)

Xét \(\Delta EAB\) và \(\Delta ECD\), ta có:

\(\widehat {ABE} = \widehat {CDE}\)

\(AB = CD\)

\(\widehat {BAE} = \widehat {DCE}\)

\(\Rightarrow \Delta EAB=\Delta ECD\) (g-c-g)

c) Vì \(\Delta EAB=\Delta ECD\) nên EB = ED ( 2 cạnh tương ứng)

Xét \(\Delta OBE\) và \(\Delta ODE\), ta có :

 EB = ED

OB = OD

OE chung

\( \Rightarrow \Delta OBE=\Delta ODE \)  (c.c.c)

\( \Rightarrow \widehat{BOE}=\widehat{DOE}\) ( 2 góc tương ứng)

\( \Rightarrow \) OE là phân giác \(\widehat {xOy}\)

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Ta có: ΔOAD=ΔOBC

nên \(\widehat{OAD}=\widehat{OBC}\)

\(\Leftrightarrow180^0-\widehat{OAD}=180^0-\widehat{OBC}\)

hay \(\widehat{EAB}=\widehat{ECD}\)

Xét ΔEAB và ΔECD có 

\(\widehat{EAB}=\widehat{ECD}\)

AB=CD

\(\widehat{EBA}=\widehat{EDC}\)

Do đó: ΔEAB=ΔECD

c: Ta có: ΔEAB=ΔECD

nên EB=ED

Xét ΔOEB và ΔOED có 

OE chung

EB=ED

OB=OD

Do đó: ΔOEB=ΔOED

Suy ra: \(\widehat{BOE}=\widehat{DOE}\)

hay OE là tia phân giác của góc xOy

22 tháng 12 2021

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{O}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

22 tháng 12 2021

\(a,\left\{{}\begin{matrix}OA=OC\\OD=OB\\\widehat{AOB}\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\\ \Rightarrow AD=BC\\ b,\Delta AOD=\Delta COB\\ \Rightarrow\widehat{ADO}=\widehat{CBO};\widehat{OAD}=\widehat{OCB}\\ \Rightarrow180^0-\widehat{OAD}=180^0-\widehat{OCB}\\ \Rightarrow\widehat{ECD}=\widehat{EAB}\\ \text{Ta có}\left\{{}\begin{matrix}OA=OC\\OD=OB\end{matrix}\right.\Rightarrow CD=OD-OC=OB-OA=AB\\ \left\{{}\begin{matrix}AB=CD\\\widehat{ADO}=\widehat{CBO}\\\widehat{ECD}=\widehat{EAB}\end{matrix}\right.\Rightarrow\Delta EAB=\Delta ECD\left(g.c.g\right)\)

29 tháng 12 2021

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC