Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(100)=x8-(100+1)x7+(100+1)x6-(100+1)x5+....+(100+1)x2-(100+1)x+25
=x8-(x+1)x7+(x+1)x6-(x+1)x5+....+(x+1)x2-(x+1)x+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=25
vậy f(100)=25
f(100)=> x=100
=>x+1=101
thay x+1=101 ta được:
f(100)=x8-(x+1)x7+(x+1)x6-(x+1)x5+...+(x+1)x2-(x+1)x+25
=x8-(x8+x7)+(x7+x6)-(x6+x5)+...+(x3+x2)-(x2+x)+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=-x+25
=-100+25
=-75
\(x=100\Rightarrow x+1=101\)
\(f\left(x\right)=x^8-\left(x+1\right).x^7+\left(x+1\right).x^6-\left(x+1\right).x^5+....+\left(x+1\right).x^2+\left(x+1\right).x+25\)
\(f\left(x\right)=x^8-x^8-x^7+x^7+x^6-x^6-x^5+.....+x^3+x^2-x^2+x+25\)
\(f\left(100\right)=100+25=125\)
\(f\left(x\right)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25\)
\(f\left(x\right)=x^8-100x^7-x^7+100x^6+x^6-100x^5-x^5+...+100x^2+x-100x-x+25\)
\(f\left(x\right)=x^7\left(x-100\right)-x^6\left(x-100\right)+x^5\left(x-100\right)-...+x\left(x-100\right)-x+25\)
\(f\left(100\right)=x^7.0-x^6.0+x^5.0-...+x.0-100+25\)
\(f\left(100\right)=25-100=-75\)
\(f\left(100\right)=100^8-101.\left(100^7-100^6+100^5-100^4+100^3-100^2+100\right)+25\)
ta có: \(100.\left(100^7-100^6+...-100^2+100\right)+\left(100^7-100^6+...-100^2+100\right)=100^8+100\)
\(\Rightarrow f\left(x\right)=100^8-100^8-100+25=-75\)
p/s: cách này ngắn nên tớ làm, ko phải câu (có 1 bạn tl rồi)
Ta có: 101 = 100+1=x+1
Khi đó :
\(f\left(x\right)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25\)
\(f\left(x\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+.....+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(f\left(x\right)=x^8-x^8-x^7+x^7+x^6-x^6+x^5+...+x^3+x^2-x^2-x+25\)
\(f\left(x\right)=-x+25\)
Vậy \(f\left(100\right)=-100+25=-75\)