K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
14 tháng 2 2019
Chọn B
Ta có a8= C88+C98+C108+C118+C128= 1+9+45+165+495= 715
CM
5 tháng 7 2017
Chọn B
Ta có
Tổng các hệ số trong khai triển là:
Cho x = 1 ta có:
Số hạng tổng quát trong khai triển: \(C_n^k2^kx^{n-k}\) với \(n=1000\)
Hệ số của số hạng thứ k là: \(C_n^k2^k\)
Hệ số này là lớn nhất khi và chỉ khi: \(\left\{{}\begin{matrix}C_n^k2^k\ge C_n^{k+1}2^{k+1}\\C_n^k2^k\ge C_n^{k-1}2^{k-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{n!}{k!\left(n-k\right)!}\ge\frac{n!.2}{\left(k+1\right)!\left(n-k-1\right)!}\\\frac{n!.2}{k!\left(n-k\right)!}\ge\frac{n!}{\left(k-1\right)!\left(n-k+1\right)!}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k+1\ge2\left(n-k\right)\\2\left(n-k+1\right)\ge k\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ge\frac{2n-1}{3}=\frac{1999}{3}\\k\le\frac{2n+2}{3}=\frac{2002}{3}\end{matrix}\right.\)
\(\Rightarrow k=667\)
Vậy hệ số lớn nhất là \(C_{100}^{667}2^{667}\)