K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/b = b/c = c/a = (a+b+c)/(a+b+c) = 1 ( vì a+b+c khác 0)

vì a/b =1 nên a=b

vì b/c =1 nên b=c

vì c/a = 1 nên c=a

=> a=b=c

14 tháng 8 2017

theo tinh chat cua day ti so bang nhau ta co:

a/b=b/c=c/a =a+b+c/b+c+a=1

suy ra: a/b=1

b/c=1

c/a=1

vay a=b=c=

Cộng 3 ở 3 p/s đầu và trừ 4 ở p/s cuối . Nó sẽ xuất hiện tử chung thôi 

\(\frac{a+b-x}{b}+\frac{a+c-x}{b}+\frac{b+c-x}{a}+\frac{4x}{a+b+c}=1\)

\(\Leftrightarrow\left(\frac{a+b-x}{c}+1\right)+\left(\frac{a+c-x}{b}+1\right)+\left(\frac{b+c-x}{a}+1\right)+\left(\frac{4x}{a+b+c}-4\right)=0\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}+\frac{4\left(x-a-b-c\right)}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}-\frac{4\left(a+b+c-x\right)}{a+b+c}=0\)

\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}\right)=0\)

\(\Rightarrow a+b+c-x=0\)hoặc \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0\)

Nếu \(a+b+c-x=0\Rightarrow x=a+b+c\)

Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}=0\Rightarrow x\inℝ\)

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

21 tháng 9 2018

Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))

1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)

2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)

Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)

17 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=1\)

\(\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)( 1 )

\(\frac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)( 2 )

\(\frac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}=2.2.2=8\)

17 tháng 10 2017

bạn cần gấp ko mình bt làm nè

13 tháng 7 2018

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c=2012\)

13 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b\)

\(b=c\)

\(c=a\)

\(\Rightarrow a=b=c\).Mà \(a=2012\)

\(\Rightarrow a=b=c=2012\)

10 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\frac{a}{b}=1\) hay \(\frac{2018}{b}=1\), suy ra b = 2018
Tương tự, tính ra c = 2018.

Vậy b = 2018, c = 2018.