Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2}{3}a=\frac{1}{4}b\)
\(\Leftrightarrow\frac{2a}{3}=\frac{b}{4}\)
\(\Leftrightarrow2a=\frac{3b}{4}\)
hay \(a=\frac{3b}{4}:2=\frac{3b}{8}\)
Ta có: \(\frac{1}{2}b=\frac{1}{3}c\)
\(\Leftrightarrow\frac{b}{2}=\frac{c}{3}\)
hay \(c=\frac{3b}{2}\)
Ta có: a+b+c=90
\(\Leftrightarrow\frac{3b}{8}+b+\frac{3b}{2}=90\)
\(\Leftrightarrow b\left(\frac{3}{8}+1+\frac{3}{2}\right)=90\)
\(\Leftrightarrow b\cdot\frac{23}{8}=90\)
hay \(b=90:\frac{23}{8}=\frac{720}{23}\)
Ta có: \(a=\frac{3b}{8}\)(cmt)
hay \(a=3\cdot\frac{720}{23}:8=\frac{270}{23}\)
Ta có: a+b+c=90
\(\Leftrightarrow c=90-a-b=90-\frac{270}{23}-\frac{720}{23}=\frac{1080}{23}\)
Vậy: \(\left(a,b,c\right)=\left(\frac{270}{23};\frac{720}{23};\frac{1080}{23}\right)\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1
a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*
=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
b) tương tự ta có \(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)
\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
bài 2 chịu
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
=>đpcm
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\). Cmr: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(=\frac{a}{d}=\frac{c}{b}=\frac{b}{c}\)
\(=\frac{a+c+b}{d+b+c}\)
\(\Rightarrow\frac{a}{d}=\frac{c}{b}=\frac{b}{c}=\left(\frac{a+b+c}{b+d+c}\right)^3\)
\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
Bài 1:
a) \(-\frac{4}{5}-\frac{8}{25}\left(\frac{-5}{2}-0,125\right)\\ =-\frac{4}{5}-\frac{8}{25}\left(\frac{-5}{2}-\frac{1}{8}\right)\\ =-\frac{4}{5}-\frac{8}{25}\left(\frac{-20}{8}-\frac{1}{8}\right)\\ =-\frac{4}{5}-\frac{8}{25}\cdot\frac{-21}{8}\\ =-\frac{4}{5}-\frac{-21}{25}\\ =\frac{-4}{5}+\frac{21}{25}\\ =\frac{-20}{25}+\frac{21}{25}=\frac{1}{25}\)
c) \(5\frac{1}{2}-4\frac{2}{3}:\frac{16}{9}-3\frac{1}{3}:\frac{16}{9}\\ =5\frac{1}{2}-\left(4\frac{2}{3}:\frac{16}{9}+3\frac{1}{3}:\frac{16}{9}\right)\\ =5\frac{1}{2}-\left(4\frac{2}{3}+3\frac{1}{3}\right):\frac{16}{9}\\ =5\frac{1}{2}-8\cdot\frac{9}{16}\\ =\frac{11}{2}-\frac{9}{2}=\frac{2}{2}=1\)
Bài 2:
a) \(\left(20\%x+\frac{2}{5}x-2\right):\frac{1}{3}=-2013\\ \left(\frac{1}{5}x+\frac{2}{5}x-2\right)\cdot3=-2013\\ \left[x\left(\frac{1}{5}+\frac{2}{5}\right)-2\right]=\left(-2013\right):3\\ x\cdot\frac{3}{5}-2=-671\\ x\cdot\frac{3}{5}=-671+2\\ x\cdot\frac{3}{5}=-669\\ x=\left(-669\right):\frac{3}{5}\\ x=\left(-669\right)\cdot\frac{5}{3}\\ x=-1115\)Vậy x = -1115
b) \(\left(4,5-2\left|x\right|\right)\cdot1\frac{4}{7}=\frac{11}{14}\\ \left(\frac{9}{2}-2\left|x\right|\right)\cdot\frac{11}{7}=\frac{11}{14}\\ \frac{9}{2}-2\left|x\right|=\frac{11}{14}:\frac{11}{7}\\ \frac{9}{2}-2\left|x\right|=\frac{11}{14}\cdot\frac{7}{11}\\ \frac{9}{2}-2\left|x\right|=\frac{1}{2}\\ 2\left|x\right|=\frac{9}{2}-\frac{1}{2}\\ 2\left|x\right|=4\\ \left|x\right|=4:2\\ \left|x\right|=2\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)Vậy x ∈ {2 ; -2}