Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
=>đpcm
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\)\(\frac{a+b+c}{b+c+d}.\)\(\frac{a+b+c}{b+c+d}.\)\(\frac{a+b+c}{b+c+d}.\)
\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
Bài 1: D
Bài 2:
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)
\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{\left(a-b\right)^4}{\left(c-d\right)^4}=\left(\frac{a-b}{c-d}\right)^4\left(1\right)\)
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\left(đpcm\right)\)
Áp đụng tính chất dãy tỷ số bằng nhau ta được
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Ta lại có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Ta có:
+) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(1)
+) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)(2)
Từ (1)(2)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(dpcm\right)\)
Ta có : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có : \(\frac{a\cdot b}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)
Ta lại có : \((\frac{a-b}{c-d})^2=\frac{k^2\cdot b^2-b^2}{k^2\cdot d^2-d^2}=\frac{b^2(k-1)}{d^2(k-1)}=\frac{b^2}{d^2}\)
Vậy : \((\frac{a-b}{c-d})^2=\frac{ab}{cd}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)
đpcm
đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\left(\frac{b\left(t-1\right)}{d\left(t-1\right)}\right)^4=\left(\frac{b}{d}\right)^4=\frac{a^4+b^4}{c^4+d^4}=\frac{b^4\left(t+1\right)}{d^4\left(t+1\right)}=\left(\frac{b}{d}\right)^4\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(=\frac{a}{d}=\frac{c}{b}=\frac{b}{c}\)
\(=\frac{a+c+b}{d+b+c}\)
\(\Rightarrow\frac{a}{d}=\frac{c}{b}=\frac{b}{c}=\left(\frac{a+b+c}{b+d+c}\right)^3\)
\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
Cho \(\frac{a}{2003}=\frac{a}{2004}=\frac{c}{2005}\)
Chứng minh rằng: 4(a - b)(b - c) = (c - a)\(^2\)