K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

Đặt: \(\frac{a}{b}=\frac{b}{c}=k\)

=> \(\frac{a}{b}.\frac{b}{c}=k^2\)

=> \(\frac{a}{c}=k^2\) (1)

Lại có: \(\frac{a+b}{b+c}=\frac{a}{b}=\frac{b}{c}=k\)

=> \(\left(\frac{a+b}{b+c}\right)^2=k^2\) (2)

Từ (1) và (2) => \(\left(\frac{a+b}{b+c}\right)^2=\frac{a}{c}\)

23 tháng 10 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck\)

Ta có:

\(\frac{a}{c}=\frac{bk}{c}=\frac{bkk}{ck}=\frac{bkk}{b}=k^2\) (1)

\(\left(\frac{a+b}{b+c}\right)^2=\left(\frac{bk+ck}{b+c}\right)^2=\left[\frac{k\left(b+c\right)}{b+c}\right]^2=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{a}{c}=\left(\frac{a+b}{b+c}\right)^2\)

Vậy \(\frac{a}{c}=\left(\frac{a+b}{b+c}\right)^2\)

23 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

23 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck,c=dk\)

Ta có:

\(\frac{a}{d}=\frac{bk}{d}=\frac{bkk}{dk}=\frac{bk^2}{c}=\frac{b.k^2.k}{ck}=\frac{b.k^3}{b}=k^3\) (1)

\(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{bk+ck+dk}{b+c+d}\right)^3=\left[\frac{k\left(b+c+d\right)}{b+c+d}\right]^3=k^3\) (2)

Từ (1) và (2) suy ra \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

8 tháng 11 2016

Mình chỉ làm những câu rõ đề thôi nhé ^^

1/ a/ Đặt \(t=2x-3\) thì pt trở thành \(t^3=\left(t+2\right)^2\Leftrightarrow t^3-t^2-4t-4=0\Leftrightarrow t^2\left(t-1\right)-4\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left(t^2-4\right)=0\Leftrightarrow\left(t-2\right)\left(t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=1\\t=-2\end{array}\right.\)

Tới đây dễ rồi .

b/ Tương tự đặt \(a=2x-3\) thì pt trở thành \(a^3=a+2\Leftrightarrow a^3-a-2=0\)

Bạn xem lại đề , lớp 7 chưa học giải pt này đâu

c/ VT > 0 => VP > 0 => x > 0

Với x > 0 thì: \(\left|x+3\right|+\left|x+4\right|+\left|x+5\right|=x+3+x+4+x+5=3x+12\)

Tới đây dễ rồi :)

8 tháng 11 2016

4) |2-|3-2x||=4

<=>\(\left[\begin{array}{nghiempt}2-\left|3-2x\right|=4\\2-\left|3-2x\right|=-4\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}\left|3-2x\right|=-2\left(vl\right)\\\left|3-2x\right|=6\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}3-2x=6\\3-2x=-6\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{9}{2}\end{array}\right.\)

3 tháng 1 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2016c-a-b}{c}=\frac{2016b-a-c}{b}=\frac{2016a-b-c}{a}=\frac{2016c-a-b+2016b-a-c+2016a-b-c}{a+b+c}=\frac{2016\left(a+b+c\right)-2\left(a+b+c\right)}{a+b+c}=\frac{2014\left(a+b+c\right)}{a+b+c}=2014\)

\(\Rightarrow\left\{\begin{matrix}\frac{2016c-a-b}{c}=2014\\\frac{2016b-a-c}{b}=2014\\\frac{2016a-b-c}{a}=2014\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}2016c-a-b=2014c\\2016b-a-c=2014b\\2016a-b-c=2014a\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}-a-b=2014c-2016c\\-a-c=2014b-2016b\\-b-c=2014a-2016a\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}-a-b=-2c\\-a-c=-2b\\-b-c=-2a\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\) (1)

Ta có \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(\Leftrightarrow A=\frac{a+b}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)

Thế (1) vào biểu thức ta có :

\(A=\frac{a+b}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)

\(\Rightarrow A=\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}\)

\(\Rightarrow A=2.2.2=8\)

Vậy biểu thức A=8

3 tháng 1 2017

thank nhaNguyễn Nhật Minh

30 tháng 10 2016

\(\left(\frac{a}{c}\right)^n=\frac{a^n+b^n}{c^n+d^n}\Leftrightarrow\frac{a^n}{c^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n+b^n-a^n}{c^n+d^n-c^n}=\frac{b^n}{d^n}\)

\(\Leftrightarrow\left(\frac{a}{c}\right)^n=\left(\frac{b}{d}\right)^n\)

Từ đó suy ra đpcm.

30 tháng 10 2016

Áp dụng t/c dãy tỉ số bằng nhau, ta có: \(\left(\frac{a}{c}^n\right)=\frac{a^n+b^n}{c^n+d^n}=\frac{\left(a^n+b^n\right)-a^n}{\left(c^n+d^n\right)-c^n}=\frac{b^n}{d^n}\)

=> \(\left(\frac{a}{c}\right)^n=\left(\frac{b}{d}\right)^n\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

31 tháng 10 2016

Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)

Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.

Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)

Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)

Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)

Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.

Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9

Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)

Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.

Tới đây bạn tự làm nhé ^^

31 tháng 10 2016

Chị Ngọc chịu khó cày thiệt á nha, cày cả trưa luôn ^^

E lười thí mồ =)))

23 tháng 11 2019

Ta có: \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{2}{c}=\frac{a}{1}+\frac{b}{1}\)

\(\Rightarrow\frac{2}{c}=\frac{a}{ab}+\frac{b}{ab}\)

\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}\)

\(\Rightarrow2ab=\left(a+b\right).c\)

\(\Rightarrow2ab=ac+bc\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right).\)

Chúc bạn học tốt!

9 tháng 10 2016

Ta có hình vẽ:

x y x' y' M

(hình vẽ chỉ mang tính chất minh họa)

Có: xMx' + yMx' = 180o (kề bù)

\(\Rightarrow\frac{1}{2}xMx'+\frac{1}{2}yMx'=\frac{1}{2}.180^o=90^o\) (1)

Lại có: \(\frac{2}{3}xMx'+\frac{1}{2}yMx'=100^o\)(2)

Từ (1) và (2) \(\Rightarrow\left(\frac{2}{3}xMx'+\frac{1}{2}yMx'\right)-\left(\frac{1}{2}xMx'+\frac{1}{2}yMx'\right)=100^o-90^o\)

\(\Rightarrow\frac{1}{6}xMx'=10^o\)

\(\Rightarrow xMx'=10^o:\frac{1}{6}=10^o.6=60^o\)

=> x'My = 180o - 60o = 120o

Có: xMx' = yMy' = 60o (đối đỉnh)

x'My = xMy' (đối đỉnh)

Vậy...

9 tháng 10 2016

Cảm ơn chj nhiều nhé soyeon_Tiểubàng giải

30 tháng 10 2016

Giải:

Gọi \(a_1=a\), \(a_2=b,a_3=c,a_4=d\)

Ta có: \(b^2=a.c\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=b.d\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck,c=dk\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(bk\right)^3+\left(ck\right)^3+\left(dk\right)^3}{b^3+c^3+d^3}=\frac{b^3.k^3+c^3.k^3+d^3.k^3}{b^3+c^3+d^3}=\frac{k^3\left(b^3+c^3+d^3\right)}{b^3+c^3+d^3}=k^3\) (1)

\(\frac{a}{d}=\frac{bk}{d}=\frac{ckk}{d}=\frac{dkkk}{d}=k^3\) (2)

Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\) hay \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\) ( đpcm )

 

30 tháng 10 2016

đợi t lm soạn nốt văn đã