K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Ta có: \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{2}{c}=\frac{a}{1}+\frac{b}{1}\)

\(\Rightarrow\frac{2}{c}=\frac{a}{ab}+\frac{b}{ab}\)

\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}\)

\(\Rightarrow2ab=\left(a+b\right).c\)

\(\Rightarrow2ab=ac+bc\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 11 2019

Ta có:

Vậy \(A< \frac{1}{2}.\)

Chúc bạn học tốt!

24 tháng 11 2019

Ta có:

Vậy \(A< \frac{1}{2}.\)

Chúc bạn học tốt!

24 tháng 11 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1)

\(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2018a}{2018b}=\frac{2019c}{2019d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{2018a}{2018b}=\frac{2019c}{2019d}=\frac{2018a+2019c}{2018b+2019d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{2018a+2019c}{2018b+2019d}.\)

\(\Rightarrow\left(2018a+2019c\right).\left(b+d\right)=\left(a+c\right).\left(2018b+2019d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

5 tháng 12 2019

b)

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}.\)

+ Xét \(a+b+c\ne0.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{1}{1}=1.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=1\Rightarrow a=1.b=b\\\frac{b}{c}=1\Rightarrow b=1.c=c\\\frac{c}{a}=1\Rightarrow c=1.a=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\left(đpcm\right).\)

+ Xét \(a+b+c=0.\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right).\)

Chúc bạn học tốt!

2 tháng 12 2019

Ta có:

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}.\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\left(đpcm\right).\)

Chúc bạn học tốt!