K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

23 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck,c=dk\)

Ta có:

\(\frac{a}{d}=\frac{bk}{d}=\frac{bkk}{dk}=\frac{bk^2}{c}=\frac{b.k^2.k}{ck}=\frac{b.k^3}{b}=k^3\) (1)

\(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{bk+ck+dk}{b+c+d}\right)^3=\left[\frac{k\left(b+c+d\right)}{b+c+d}\right]^3=k^3\) (2)

Từ (1) và (2) suy ra \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

23 tháng 10 2016

Đặt: \(\frac{a}{b}=\frac{b}{c}=k\)

=> \(\frac{a}{b}.\frac{b}{c}=k^2\)

=> \(\frac{a}{c}=k^2\) (1)

Lại có: \(\frac{a+b}{b+c}=\frac{a}{b}=\frac{b}{c}=k\)

=> \(\left(\frac{a+b}{b+c}\right)^2=k^2\) (2)

Từ (1) và (2) => \(\left(\frac{a+b}{b+c}\right)^2=\frac{a}{c}\)

23 tháng 10 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck\)

Ta có:

\(\frac{a}{c}=\frac{bk}{c}=\frac{bkk}{ck}=\frac{bkk}{b}=k^2\) (1)

\(\left(\frac{a+b}{b+c}\right)^2=\left(\frac{bk+ck}{b+c}\right)^2=\left[\frac{k\left(b+c\right)}{b+c}\right]^2=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{a}{c}=\left(\frac{a+b}{b+c}\right)^2\)

Vậy \(\frac{a}{c}=\left(\frac{a+b}{b+c}\right)^2\)

30 tháng 10 2016

\(\left(\frac{a}{c}\right)^n=\frac{a^n+b^n}{c^n+d^n}\Leftrightarrow\frac{a^n}{c^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n+b^n-a^n}{c^n+d^n-c^n}=\frac{b^n}{d^n}\)

\(\Leftrightarrow\left(\frac{a}{c}\right)^n=\left(\frac{b}{d}\right)^n\)

Từ đó suy ra đpcm.

30 tháng 10 2016

Áp dụng t/c dãy tỉ số bằng nhau, ta có: \(\left(\frac{a}{c}^n\right)=\frac{a^n+b^n}{c^n+d^n}=\frac{\left(a^n+b^n\right)-a^n}{\left(c^n+d^n\right)-c^n}=\frac{b^n}{d^n}\)

=> \(\left(\frac{a}{c}\right)^n=\left(\frac{b}{d}\right)^n\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

3 tháng 1 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2016c-a-b}{c}=\frac{2016b-a-c}{b}=\frac{2016a-b-c}{a}=\frac{2016c-a-b+2016b-a-c+2016a-b-c}{a+b+c}=\frac{2016\left(a+b+c\right)-2\left(a+b+c\right)}{a+b+c}=\frac{2014\left(a+b+c\right)}{a+b+c}=2014\)

\(\Rightarrow\left\{\begin{matrix}\frac{2016c-a-b}{c}=2014\\\frac{2016b-a-c}{b}=2014\\\frac{2016a-b-c}{a}=2014\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}2016c-a-b=2014c\\2016b-a-c=2014b\\2016a-b-c=2014a\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}-a-b=2014c-2016c\\-a-c=2014b-2016b\\-b-c=2014a-2016a\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}-a-b=-2c\\-a-c=-2b\\-b-c=-2a\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\) (1)

Ta có \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(\Leftrightarrow A=\frac{a+b}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)

Thế (1) vào biểu thức ta có :

\(A=\frac{a+b}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)

\(\Rightarrow A=\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}\)

\(\Rightarrow A=2.2.2=8\)

Vậy biểu thức A=8

3 tháng 1 2017

thank nhaNguyễn Nhật Minh

4 tháng 12 2019

a) Ta có: \(\frac{a+b}{a-b}=\frac{c+d}{c-d}.\)

\(\Rightarrow\left(a+b\right).\left(c-d\right)=\left(a-b\right).\left(c+d\right)\)

\(\Rightarrow ac-ad+bc-bd=ac+ad-bc-bd\)

\(\Rightarrow ac-ad+bc=ac+ad-bc\)

\(\Rightarrow ac-ad+bc-ac-ad+bc=0\)

\(\Rightarrow-2ad+2bc=0\)

\(\Rightarrow-2ad=0-2bc\)

\(\Rightarrow-2ad=-2bc\)

\(\Rightarrow2ad=2bc\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right).\)

b) Ta có:

Chúc bạn học tốt!

24 tháng 11 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1)

\(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2018a}{2018b}=\frac{2019c}{2019d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{2018a}{2018b}=\frac{2019c}{2019d}=\frac{2018a+2019c}{2018b+2019d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{2018a+2019c}{2018b+2019d}.\)

\(\Rightarrow\left(2018a+2019c\right).\left(b+d\right)=\left(a+c\right).\left(2018b+2019d\right)\left(đpcm\right).\)

Chúc bạn học tốt!