Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc AKB=1/2*sđ cung AB=90 độ
góc HEB+góc HKB=180 độ
=>BEHK nội tiếp
2: Xét ΔACH và ΔAKC có
góc ACH=góc AKC(1/2sđ cung AC=1/2sđ cung AD)
góc CAH chung
=>ΔACH đồng dạng với ΔAKC
=>AC/AK=AH/AC
=>AC^2=AK*AH
CD là trung trực của OA
=>E là trung điểm của OA
Xét ΔCAO có
CE vừa là đường cao, vừa là trung tuyến
=>ΔCAO cân tại C
=>CA=CO=OA
=>CA=R
a) Ta có \(\widehat{AKB}=90^0\) (góc nội tiếp chắn nửa đường tròn)
\(\widehat{BEC}=90^0\) (Do \(CD\) là trung trực của \(OA\))
\(\Rightarrow\widehat{BKC}+\widehat{BEC}=90^0+90^0=180^0\)
\(\Rightarrow BEHK\) là tứ giác nội tiếp.
b) Ta có \(OC=OD=R\) nên tam giác \(OCD\) cân tại O
Mà \(OE\perp CD\Rightarrow OE\) là phân giác \(\widehat{COD}\Rightarrow\widehat{COA}=\widehat{DOA}\)
\(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}\)
Do \(\left\{{}\begin{matrix}\widehat{ACH}=\dfrac{1}{2}sđ\stackrel\frown{AD}\\\widehat{AKC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\end{matrix}\right.\Rightarrow\widehat{ACH}=\widehat{AKC}\)
Xét \(\Delta ACH\) và \(\Delta AKC\) có
\(\widehat{CAK}\) chung
\(\widehat{ACH}=\widehat{AKC}\) (cmt)
\(\Rightarrow\Delta ACH\sim\Delta AKC\) (g.g) \(\Rightarrow\dfrac{AC}{AH}=\dfrac{AK}{AC}\Rightarrow AC^2=AH.AK\)
Ta có: Tam giác \(AOC\) cân tại \(O\) (do \(OC=OA=R\))
Mặt khác: \(\Delta OEC\) vuông tại \(E\), có \(OE=\dfrac{1}{2}OA=\dfrac{1}{2}OC\)
\(\Rightarrow\widehat{OCE}=30^0\Rightarrow\widehat{AOC}=60^0\)
\(\Rightarrow\Delta OAC\) đều hay \(AC=OA=OC=R\)
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)
1: góc AKB=1/2*180=90 độ
góc HEB+góc HKB=180 độ
=>HEBK nội tiếp
2: Xét ΔACH và ΔAKC có
góc ACH=góc AKC
góc CAH chung
=>ΔACH đồng dạng với ΔAKC
=>AC/AK=AH/AC
=>AC^2=AH*AK
Xét ΔCAE có
CE vừa là đường cao, vừa là trung tuyến
=>ΔCAE cân tại C
=>CA=CO=R