K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

……………"………

15 tháng 2 2020

Hình tự vẽ nha

1, Ta có: MA = MC (t/c 2 tt cắt nhau)

              OA = OC (t/c 2 tt cắt nhau)

=> OM là đường trung trực của AC

=> OM _|_ AC hay \(\widehat{OEC}=90^o\)

Có:  \(\widehat{OBD}=90^o\) (t/c tt của đường tròn)

XÉt tứ giác OBDE có: \(\widehat{OEC}+\widehat{OBD}=90^o+90^o=180^o\)

Mà 2 góc này ở vị trí đối diện

=> tứ giác OBDE nội tiếp (đpcm)

2, Xét t/g ABC có: góc ACB là góc nội tiếp chắn nửa đường tròn

=> \(\widehat{ACB}=90^o\) hay BC _|_ AD

Áp dụng hệ thức b2=a.b' vào t/g ABD vuông tại B, đường cao BC có: \(AC.AD=AB^2=\left(2R\right)^2=4R^2\) (vì AB là đường kính) (đpcm)

3, Gọi K là trung điểm của MF (K thuộc MF) => KM=KF

Ta có: AM _|_ AB (t/c tt) ; BF _|_ AB (t/c tt)                  (1)

=> AM // BF => tứ giác AMBF là hình thang

Xét hình thang AMBF có:  KM = KF ; OA = OB (gt)

=> OK là đường trung bình của hình thang AMBF

=> OK // AM // BF mà AM _|_ AB (cmt)

=> OK _|_ AB (1)

Lại có: t/g MOF nội tiếp đường tròn => O thuộc tròn ngoại tiếp t/g MOF (2)

Từ (1) và (2) => đpcm

10 tháng 5 2020

Giải thích các bước giải:

a,

AB là đường kính của đường tròn (O) đã cho mà C là 1 điểm nằm trên đường tròn nên:

ˆACB=90∘⇔AC⊥CB⇒AC⊥DBACB^=90∘⇔AC⊥CB⇒AC⊥DB

Vậy AC vuông góc với BD

b,

MA và MC là 2 tiếp tuyến kẻ từ M đến đường tròn nên MA=MCMA=MC hay M nằm trên trung trực của AC

OA=OC=ROA=OC=R nên O cũng nằm trên trung trực của AC

Do đó, OM là trung trực của AC hay OM⊥ACOM⊥AC mà AC⊥CBAC⊥CB nên OM//BCOM//BC

Tam giác ACD vuông tại C có AM=MC nên AM=DM

Do đó, M là trung điểm AD

14 tháng 3 2021

1: Ta có \(\widehat{KAO}=\widehat{KMO}=90^o\) nên tứ giác KAOM nội tiếp.

2: Theo hệ thức lượng trong tam giác vuông ta có \(OI.OK=OA^2=R^2\)

3: Phần thuận: Dễ thấy H thuộc KI.

Ta có \(\widehat{AHO}=90^o-\widehat{HAI}=\widehat{AMK}=\widehat{AOK}\) nên tam giác AHO cân tại A.

Do đó AH = AO = R.

Suy ra H thuộc (A; R) cố định.

Phần đảo cm tương tự.

Vậy...

a: Xét (O) có

MA.MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại E

góc ADB=1/2*180=90 độ

=>góc ADM=90 độ=góc AEM

=>AMDE nội tiếp

b: AMDE nội tiếp

=>góc ADE=góc AMO=góc ACO

4 tháng 4 2023

loading...

a: Xét tứ giác AMIO có 

\(\widehat{MAO}+\widehat{MIO}=180^0\)

Do đó; AMIO là tứ giác nội tiếp

Xét (O) có

MI là tiếp tuyến

MA là tiếp tuyến

Do đó: MI=MA và OM là tia phân giác của góc IOA(1)

Xét (O) có

NI là tiếp tuyến

NB là tiếp tuyến

Do đó: NI=NB và ON là tia phân giác của góc IOB(2)

Ta có: MI+NI=MN

nên MN=MA+NB

b: Từ (1) và (2) suy ra \(\widehat{MON}=\widehat{MOI}+\widehat{NOI}=\dfrac{1}{2}\left(\widehat{IOA}+\widehat{IOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

Xét ΔMON vuông tại O có OI là đường cao

nên \(IM\cdot IN=OI^2\)

hay \(AM\cdot BN=R^2\)