K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
16 tháng 12 2021

undefined

câu c thì cơ bản là tui chứng minh hai tam giác bằng nhau (c-c-c), xong rồi tui suy ra hai góc bằng nhau

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

=>ΔABC cân tại A

mà OB=OC

nên OA là trung trực của BC

b: ΔOEF cân tại O

mà OG là trung tuyến

nên OG vuông góc với EF

Xét ΔAGO vuông tại G và ΔHDO vuông tại D có

góc AOG chung

Do đó: ΔAGO đồng dạng với ΔHDO

c: ΔAGO đồng dạng vơi ΔHDO

=>OA/OH=OG/OD

=>OA*OD=OH*OG

=>OH*OG=OE^2

=>ΔHEO vuông tại E

=>HE là tiếp tuyên của (O)

21 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

b: OA là đường trung trực của BC

=>OA\(\perp\)BC tại D và D là trung điểm của BC

Xét ΔBOA vuông tại B có BD là đường cao

nên \(OD\cdot DA=BD^2\)

c: Sửa đề: \(OD\cdot OA=OG\cdot OH\)

Ta có: ΔOEF cân tại O

mà OG là đường trung tuyến

nên OG\(\perp\)EF tại G

Xét ΔOGA vuông tại G và ΔODH vuông tại D có

\(\widehat{GOA}\) chung

Do đó: ΔOGA đồng dạng với ΔODH

=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)

=>\(OG\cdot OH=OA\cdot OD\)

d: Xét ΔBOA vuông tại B có BD là đường cao

nên \(OD\cdot OA=OB^2=OE^2\)

=>\(OG\cdot OH=OE^2\)

=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

Xét ΔOGE và ΔOEH có

\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

\(\widehat{GOE}\) chung

Do đó: ΔOGE đồng dạng với ΔOEH

=>\(\widehat{OGE}=\widehat{OEH}=90^0\)

=>EH là tiếp tuyến của (O)