K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 12 2021
câu c thì cơ bản là tui chứng minh hai tam giác bằng nhau (c-c-c), xong rồi tui suy ra hai góc bằng nhau
19 tháng 1 2023
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
=>ΔABC cân tại A
mà OB=OC
nên OA là trung trực của BC
b: ΔOEF cân tại O
mà OG là trung tuyến
nên OG vuông góc với EF
Xét ΔAGO vuông tại G và ΔHDO vuông tại D có
góc AOG chung
Do đó: ΔAGO đồng dạng với ΔHDO
c: ΔAGO đồng dạng vơi ΔHDO
=>OA/OH=OG/OD
=>OA*OD=OH*OG
=>OH*OG=OE^2
=>ΔHEO vuông tại E
=>HE là tiếp tuyên của (O)
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
b: OA là đường trung trực của BC
=>OA\(\perp\)BC tại D và D là trung điểm của BC
Xét ΔBOA vuông tại B có BD là đường cao
nên \(OD\cdot DA=BD^2\)
c: Sửa đề: \(OD\cdot OA=OG\cdot OH\)
Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF tại G
Xét ΔOGA vuông tại G và ΔODH vuông tại D có
\(\widehat{GOA}\) chung
Do đó: ΔOGA đồng dạng với ΔODH
=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OD\)
d: Xét ΔBOA vuông tại B có BD là đường cao
nên \(OD\cdot OA=OB^2=OE^2\)
=>\(OG\cdot OH=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}=90^0\)
=>EH là tiếp tuyến của (O)