K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

Hình tự vẽ nha e

a) Xét (O) có EF là dây cung, I là trung điểm của EF

=> OI vuông góc với EF (tính chất đường kính và dây)

=> \(\widehat{OIA}=90^o\)

Lại có : (O) có AB là tiếp tuyến tại B

=> AB vuông góc với OB (tc tiếp tuyến)

=> \(\widehat{ABO}=90^o\)

Xét tứ giác ABOI có \(\widehat{ABO}+\widehat{OIA}=90+90=180^o\) mà 2 góc này là 2 góc đối của tứ giác

=> tứ giác ABOI nt đường tròn (ĐPCM)

b) ta có tứ giác ABOI nt

=> \(\widehat{OAI}=\widehat{OBI}\)(2 góc nt cùng chắn cung OI)

mà \(\widehat{OAI}=\widehat{DIF}\)(2 góc so le trong, AO//FK)

=> \(\widehat{KBI}=\widehat{IFK}\)

Xét tứ giác BIKF có \(\widehat{KBI}=\widehat{IFK}\)

mà 2 góc trên là góc nội tiếp cùng chằn cung CI

=> tứ giác BIKF nt hay 4 điểm B,I,K,F cùng thuộc 1 đg tròn

chúc e học tốt

 

 

27 tháng 2 2021

sao IFK chắn cung IC đk anh

 

10 tháng 3 2019

Giải hộ mình với 

7 tháng 8 2020

Đề thi vào lớp 10 môn toán chuyên Sư Phạm Hà Nội năm 2020-2021

30 tháng 5 2022

loading...

a. Tứ giác AOBF nội tiếp vì có $\angle OAF=\angle OBF=90^o$

b. Chú ý rằng $OF\perp AB$ nên $OF\parallel AE$, ta biến đổi tỉ số bằng định lý Thales:

\(\dfrac{IK}{OF}=\dfrac{AK}{AF}=\dfrac{EG}{EO}=\dfrac{IG}{OF}\), vậy $IK=IG$

c. Nếu mình không nhầm thì PM không vuông NB, vì khi đó $M,P,E$ thẳng hàng, bạn có thể kiểm tra hình vẽ của mình :c

 

24 tháng 5 2022

a/

Ta có A và B cùng nhìn FO dưới 1 góc vuông => A và B thuộc đường tròn đường kính FO

=> AOBF là tứ giác nội tiếp

b/

Ta có 

\(\widehat{BAE}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow AE\perp AB\) (1)

\(FO\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối 2 tiếp điểm) (2)

Từ (1) và (2) => AE//FO mà KG//AE (gt) => AE//KG//FO

\(\Rightarrow\dfrac{FK}{FA}=\dfrac{OG}{OE}\) (Talet) (1)

Xét tg AFE có

\(\dfrac{FK}{FA}=\dfrac{IK}{AE}\) (Talet trong tam giác) (2)

Xét tg OAE có 

\(\dfrac{OG}{OE}=\dfrac{IG}{AE}\) (Talet trong tam giác) (3)

Từ (1) (2) (3) \(\Rightarrow\dfrac{IK}{AE}=\dfrac{IG}{AE}\Rightarrow IK=IG\)

c/ Câu này mình nghĩ bạn nên kiểm tra lại đề bài