Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMB=1/2*sđ cung AB=90 độ
góc FEB+góc FMB=180 độ
=>FMBE nội tiếp
b: Xét ΔKAB có
AM,KE là đường cao
KE cắt AM tại F
=>F là trực tâm
=>BF vuông góc AK
a) Xét (O): E \(\in\) (O) (gt).
\(\Rightarrow\) \(\widehat{AEB}=90^o\) (Góc nội tiếp).
Xét tứ giác BEFI:
\(\widehat{AEB}+\widehat{CIB}=90^o+90^o=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) BEFI là tứ giác nội tiếp đường tròn.
b) Xét (O): \(CD\perp AB\) tại I (gt).
AB là đường kính; CD là dây (gt).
\(\Rightarrow\) I là trung điểm của CD.
Xét tam giác ACD:
AI là đường trung tuyến (I là trung điểm của CD).
AI là đường cao \(\left(AI\perp CD\right).\)
\(\Rightarrow\) Tam giác ACD cân tại A. \(\Rightarrow\) AC = AD (Tính chất tam giác cân).
Xét (O): AC = AD (cmt). \(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}.\)
Xét (O): \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AD}\) (Góc nội tiếp).
Mà \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{AC}\left(cmt\right).\)
\(\Rightarrow\) \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AC}.\)
Mà \(\widehat{AEC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\) (Góc nội tiếp).
\(\Rightarrow\widehat{ACF}=\widehat{AEC}.\)
Xét tam giác ACF và tam giác AEC:
\(\widehat{A}chung.\)
\(\widehat{ACF}=\widehat{AEC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác ACF \(\sim\) Tam giác AEC (g - g).
\(\Rightarrow\) \(\dfrac{AC}{AE}=\dfrac{AF}{AC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow AC^2=AE.AF\left(đpcm\right).\)
1: góc AMB=1/2*sđ cung AB=90 độ
góc EFB+góc EMB=90+90=180 độ
=>EFBM nội tiếp
2: góc AMC=1/2*sđ cung AC
góc AMD=1/2*sđcung AD
mà sđ cung AC=sđ cung AD
nên góc AMC=góc AMD
=>MA là phân giác của góc CMD
Xet ΔACE và ΔAMC có
góc ACE=góc AMC
góc CAE chung
=>ΔACE đồng dạng với ΔAMC
=>AC/AM=AE/AC
=>AC^2=AM*AE
Xét \(\left(O,\frac{AB}{2}\right)\)có CD là dây cung, \(AB\perp CD\)
\(\Rightarrow\)B là điểm chính giữa của \(\widebat{CD\Rightarrow sđ\widebat{CB}=sđ\widebat{BD}}\)
Mà \(\widehat{BMC}\)là góc nt chắn \(\widebat{BC}\), \(\widehat{BMD}\)là góc nt chắn \(\widebat{BD}\)
\(\Rightarrow\widehat{BMC}=\widehat{BMD}\)\(\Rightarrow\)MB là p/g \(\widehat{CMD}\)
cảm ơn
bạn sẽ được tích