Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.
Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)
Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)
Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)
Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)
b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)
Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\). \(\Delta O_2OO_1\)vuông cân tại \(O_2\)
Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)
.Vậy diện tích \(\Delta O_2OO_1\) là\(\frac{5R^2}{8}\)
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).
b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.
Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1)
AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC
=> AO vuông góc BC (2)
Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.
Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB
=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB
Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800
=> Tứ giác AIKH nội tiếp đường tròn (đpcm).
b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD
\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC
Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC
=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)
Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)
Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600
<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.
Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)
=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.
Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK
=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).
Mình không vẽ hình , thông cảm nhé
Vì E là trung điểm của BD
=> \(OE\perp BD\)
=> góc OEC=góc OAC=90độ
=> tâm I của đường tròn ngoại tiếp của tam giác là trung điểm của OC
Gọi K là trung điểm của OA=> K cố định
Do I là trung điểm của OC
=> \(KI//AC\)
=> \(KI\perp AB\)=> KI là trung trực của OA
=> quỹ tích điểm I là đường trung trực của OA và cùng phía với C
Vậy quỹ tích điểm I là đường trung trực của OA và cùng phía với C