K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

O B C A D M N H

a) Ta thấy: Đường tròn (O) có đường kính CD và điểm M thuộc cung CD => ^CMD = 900 => ^CMA = 900.

Đường tròn (O) có 2 tiếp tuyến AB và AC => AB=AC => \(\Delta\)ABC cân tại A

Mà AO là phân giác ^BAC (T/c 2 tiếp tuyến cắt nhau) => AO vuông góc BC hay AH vuông góc BC

=> ^AHC = 900

Xét tứ giác AMHC: ^AHC = ^CMA = 900 => Tứ giác AMHC nội tiếp đường tròn (đpcm).

b) Tứ giác AMHC nội tiếp đường tròn => ^AHM = ^ACM (Cùng chắn cung AM)

Xét \(\Delta\)ACD: ^ACD = 900; CM vuông góc AD => ^ACM = ^CDM

=> ^AHM = ^CDM (1)

Dễ thấy tứ giác BDCM nội tiếp (O) => ^CDM = ^CBM (2)

Từ (1) và (2) => ^AHM = ^CBM hay ^NHM = ^HBM 

Mà ^NHM + ^BHM = 900 nên ^HBM + ^BHM = 900 => \(\Delta\)BMH vuông đỉnh M

=> ^HMN = 900 => ^HMC = ^NMA (Cùng phụ ^CMN) 

Xét \(\Delta\)MHC và \(\Delta\)MNA: ^HMC = ^NMA (cmt); ^HCM = ^NAM (Do tứ giác AMHC nột tiếp)

=> \(\Delta\)MHC ~ \(\Delta\)MNA (g.g) => \(\frac{HC}{NA}=\frac{MH}{MN}\)hay \(\frac{NA}{HC}=\frac{MN}{MH}\)(3)

Dễ chứng minh: \(\Delta\)HMN ~ \(\Delta\)BMH (g.g) => \(\frac{HN}{BH}=\frac{MN}{HM}\)(4)

Từ (3) và (4) => \(\frac{NA}{HC}=\frac{HN}{BH}\).

Lại có: \(\Delta\)ABC cân tại A có đường cao AH => AH là đường trung tuyến => HC=BH

Từ đó suy ra: NA = HN => N là trung điểm của AH (đpcm).

29 tháng 5 2018

Em cảm ơn nhiều ạ.<3

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA

=>AI*AO=2R^2

Xét ΔBDE vuông tại D có DC vuông góc BE

nên ΔBDE vuông tại D

=>BC*BE=BD^2=4R^2

=>BC*BE+AI*AO=6R^2

22 tháng 3 2021

Ta có

\(AB=AC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến hai tiếp điểm bằng nhau)

\(\Rightarrow\Delta ABC\) cân tại A (1)

AO là phân giác của \(\widehat{BAC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm của đường tròn là phân iacs của góc tạo bởi 2 tiếp tuyến) (2)

Từ (1) và (2) \(\Rightarrow AH\perp BC\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AHE}=90^o\) (*)

Ta có

\(OM=ON\) (Bán kính (O)) \(\Rightarrow\Delta OMN\) cân tại O

Ta có \(IM=IN\) (Giả thiết) => ON là đường trung tuyến của tg OMN

\(\Rightarrow OE\perp AN\) (Trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AIE}=90^o\) (**)

Từ (*) và (**) => I và H cùng nhìn AE dưới hai góc bằng nhau và bằng 90 độ => I và H nằm trên đường tròn đường kính AE nên 4 điểm A;H;I;E cùng nằm trên 1 đường tròn

11 tháng 3 2022

Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Kẻ một đường thẳng đi qua A và không đi qua O, cắt đường tròn tại hai điểm phân biệt MN (M nằm giữa A và N). Từ A vẽ hai tiếp tuyến AB và AC với (O) (BC là hai tiếp điểm). Đường thẳng BC cắt AO tại H. Gọi I là trung điểm của MN. Đường thẳng OI cắt đường thẳng BC tại E. Chứng minh AHIE là tứ giác nội tiếp.

 

 

 theo gt, ta co: 

 là trung điểm của MN

10 tháng 3 2019

Giải hộ mình với 

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)

5 tháng 1

Tam giác CDK đồng dạng Tam giác ABO ( g.g) => CK/BA = DK/OB => CK.OB=BA.DK (1) . Tam giác DBA có IK//BA => IK/BA = DK/BD => IK.BD=BA.DK (2) . Từ (1) (2) =>CK.OB=IK.BD => CK.OB=IK.2OB=> CK=2IK . Lập luận 1 tí rồi suy ra điều phải chứng minh