K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Cm tu giac NIHO  noi tiep:

CM - goc HON bang 90 do

      - goc HIN bang 90 do

=>goc HON + goc HIN =180 do

Ma HON va HIN la hai Goc doi => DPCM

b,Cm IP.MQ=IM.PH

Cm - goc IHP bang goc MQI (= goc INM)

      -goc IPH bang goc IMQ 

=> tam giac IPH dong dang voi tam giac IMQ theo truong hop g.g

=>IP/PH=IM/MQ (canh ti le tuong ung)

=>DPCM

23 tháng 1 2021

Ta có: ^AKB là góc nội tiếp chắn nửa đường tròn (O)

=> ^AKB = 90  (t/c góc nội tiếp ).

Xét tứ giác HKBI ta có:

     ^HKI=900          (do  CD⊥AB tại I)

=> ^HKI + ^ HIB=180.

=> Tứ giác BKHI là tứ giác nội tiếp (dhnb).

23 tháng 1 2021

b) Xét TGiac AHI và Tgiac AKB có:

    ^AKB = ^AHI ( do cùng =90 độ)

    ^A chung

=> tam giác AHI đồng dạng với AKB (g - g)

=> AH/AB = AI/AK (cặp cạnh tg ứg tỉ lệ)

=> AH.AK = AI.AB

Mà AI; AB cố định

=> AH.AK không phụ thuộc vào vị trí điểm K (đpcm)

30 tháng 5 2018

O M N P Q I J H G K

a) Ta thấy đường trong (O) có dây cung PQ vuông góc với đường kính MN

=> M là điểm chính giữa của cung PQ => MP=MQ => \(\Delta\)PMQ cân tại M => ^MPQ=^MQP.

Tứ giác PMQJ nội tiếp (O) => ^MJQ=^MPQ; ^MJP=^MQP. Mà ^MPQ=^MQP (cmt)

=> ^MJQ=^MJP => MJ là phân giác ^PJQ (đpcm).

b) Đường tròn (O) có MN là đường kính: J thuộc cung MN => ^MJN=900 hay ^HJN=900

Xét tứ giác HINJ: ^HJN=^HIN=900 => Tứ giác HINJ nội tiếp đường tròn (đpcm).

c) Tứ giác MJNQ nội tiếp đường tròn (O) => ^MJQ=^MNQ.

Dễ thấy ^MNQ=^MNP => ^MJQ=^MNP hay ^GJK=^KNG.

Xét tứ giác GKNJ: ^GJK=^KNG (cmt) => Tứ giác GKNJ nội tiếp đường tròn.

=> ^GKJ=^GNJ hay ^GKJ=^PNJ.

Mà tứ giác PJNQ nội tiếp (O) => ^PNJ=^PQJ nên ^GKJ=^PQJ.

Lại thấy: 2 góc ^GKJ nà ^PQJ nằm ở vị trí đồng vị => GK//PQ (đpcm).

a) Xét (O) có

ΔMJN nội tiếp đường tròn(M,J,N∈(O))

MN là đường kính(gt)

Do đó: ΔMJN vuông tại J(Định lí)

\(\widehat{MJN}=90^0\)

\(\widehat{HJN}=90^0\)

Xét tứ giác HJNI có 

\(\widehat{HJN}\) và \(\widehat{HIN}\) là hai góc đối

\(\widehat{HJN}+\widehat{HIN}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: HJNI là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔H,J,N,I cùng nằm trên một đường tròn

a: góc ACB=1/2*sđ cung AB=90 độ

góc EIB+góc ECB=180 độ

=>EIBC nội tiếp

b: Sửa đề: AE*AC-AI*AB=0

Xét ΔAIE vuông tại I và ΔACB vuông tại C co

góc IAE chung

=>ΔAIE đồng dạng với ΔACB

=>AI/AC=AE/AB

=>AI*AB=AE*AC

=>AI*AB-AE*AC=0

a: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

=>ΔAKB vuông tại K

Xét tứ giác BKHI có

góc BKH+góc BIH=180 độ

=>BKHI là tứ giác nội tiếp

b: Xét ΔAHI vuông tại I và ΔABK vuông tại K có

góc HAI chung

=>ΔAHI đồng dạng với ΔABK

=>AH/AB=AI/AK

=>AH*AK=AI*AB=1/4*R^2