K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

Đáp án A

Phương trình tiếp tuyến có dạng

∆: 2x+ y+  m= 0.

Đường tròn (C) :

(x- 3) 2+ (y +1) 2= 5 có tâm I( 3; -1) và bán kính 

Đường thẳng tiếp xúc với đường tròn (C) khi

Vậy  có 2 đường thẳng thỏa mãn là:

2x+ y= 0 và 2x+ y -10= 0

7 tháng 11 2019

Đáp án: B

(C): x 2  + y 2  - 2x + 6y + 8 = 0

⇔ (x - 1 ) 2  + (y + 3 ) 2  = 2 có I(1;-3), R = 2

Gọi d’ là tiếp tuyến của đường tròn (C) và song song với d

Vì d'//d ⇒ d': x + y + c = 0, (c ≠ 4)

d’ là tiếp tuyến của (C) nên d(I;d') = R

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3)

31 tháng 7 2017

Đáp án: C

Ta có:

(C): x 2  + y 2  + 2x + 4y = 0 ⇔ (x + 1 ) 2  + (y + 2 ) 2  = 5

⇒ I(-1;-2), R = 5

Vì d’ song song với d nên d': 2x + y + c = 0, (c ≠ -3)

Đường thẳng d’ tiếp xúc với (C) nên

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Vậy phương trình đường thẳng d’ là: 2x + y - 1 = 0 hoặc 2x + y + 9 = 0

NV
18 tháng 3 2023

1.

Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)

Do đường tròn tiếp xúc với \(d_1;d_2\) nên:

\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)

Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.

2.

Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?

18 tháng 3 2023

Câu 2: Dạ vâng anh!

12 tháng 5 2020

D nha

NV
26 tháng 3 2022

Giao điểm A của d1 và d2 là nghiệm:

\(\left\{{}\begin{matrix}x+2y+1=0\\x+y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=-6\end{matrix}\right.\)

\(\Delta\) song song d3 nên nhận (2;3) là 1 vtpt, nên có pt:

\(2\left(x-11\right)+3\left(y+6\right)=0\Leftrightarrow2x+3y-4=0\)

6 tháng 3 2020

mỗi bài, mk làm một phần ví dụ cho cậu nhé

nó đối xứng với nhau qua pt đường thẳng đenta,

trường hợp (d) ko cắt (đen ta) hay (d) cắt (đen ta) thì đều làm theo phương pháp sau 

lấy 2 điểm bất kì thuộc (d) thì ta có như sau: A(0:1)  là điểm thuộc đường thẳng (d)

lấy A' đối xứng với A qua (đen ta) 

liên hệ tính chất đối xứng qua đường thẳng thì hiểu là AA' vuông góc (đen ta)

đồng thời giao điểm của  AA' với (đen ta) là trung điểm của  AA' 

dễ dàng tìm đc giao điểm của (đen ta) với (d) là K(-2/5;1/5)

từ pt (đenta) thì dễ dàng =) vecto pháp tuyến của (đenta) =) (3;-4) 

vì AA' vuông góc với (đenta) nên =) vectơ pháp tuyến của AA' là (4;-3)

áp véctơ pháp tuyến của AA' vào phương trình tổng quát đc: 4(x-0)-3(y-1)=0 (=) 4x-3y+3=0

gọi I là giao điểm của AA' và (đenta) =) I(-6/7;-1/7)

mà I là trung điểm của AA' 

chắc chắn cậu sẽ dễ dàng suy ra điểm A'

mà K và A' thuộc (d') nên dễ dàng =) phương trình của (d')

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).

b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = \sqrt {11} \).

NV
7 tháng 4 2019

\(\left(C\right):\) \(\left(x-1\right)^2+\left(y+3\right)^2=5\) \(\Rightarrow\left\{{}\begin{matrix}I\left(1;-3\right)\\R=\sqrt{5}\end{matrix}\right.\)

a/ Gọi \(d'//d\) \(\Rightarrow\) phương trình d' có dạng: \(2x+y+c=0\)

Do d' tiếp xúc (C) \(\Rightarrow d\left(I;d'\right)=R\)

\(\Leftrightarrow\frac{\left|2.1-3.1+c\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\) \(\Leftrightarrow\left|c-1\right|=5\Rightarrow\left[{}\begin{matrix}c=6\\c=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x+y+6=0\\2x+y-4=0\end{matrix}\right.\)

- Với \(2x+y+6=0\Rightarrow y=-2x-6\)

\(\Rightarrow x^2+\left(-2x-6\right)^2-2x+6\left(-2x-6\right)+5=0\)

\(\Rightarrow x=-1\Rightarrow y=-4\Rightarrow A\left(-1;-4\right)\)

- Với \(2x+y-4=0\Rightarrow y=4-2x\)

\(\Rightarrow x^2+\left(4-2x\right)^2-2x+6\left(4-2x\right)+5=0\)

\(\Rightarrow x=3\Rightarrow y=-2\Rightarrow B\left(3;-2\right)\)

b/

Gọi \(d_1\) là đường thẳng vuông góc với \(d\Rightarrow d_1\) có dạng: \(x-2y+c=0\)

Do \(d_1\) tiếp xúc (C) nên \(d\left(I;d_1\right)=R\)

\(\Leftrightarrow\frac{\left|1.1-2.\left(-3\right)+c\right|}{\sqrt{1^2+\left(-2\right)^2}}=\sqrt{5}\) \(\Leftrightarrow\left|c+7\right|=5\Rightarrow\left[{}\begin{matrix}c=-2\\c=-12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-2y-2=0\\x-2y-12=0\end{matrix}\right.\)

Bạn tự thay vào tính tiếp điểm như bài trên

30 tháng 4 2023

Ta có: \(d'//d\Rightarrow d':2x+y+c=0\left(c\ne-5\right)\)

\(M\in d'\Leftrightarrow2\cdot3-2+c=0\)

\(\Leftrightarrow c=-4\)

Vậy: \(d':2x+y-4=0\)