Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-1 và y=2 vào (d), ta được:
\(-\left(m-2\right)+n=2\)
=>-m+2+n=2
=>-m+n=0
=>m-n=0(1)
Thay x=3 và y=-4 vào (d), ta được:
\(3\left(m-2\right)+n=-4\)
=>3m-6+n=-4
=>3m+n=2(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)
b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:
\(0\left(m-2\right)+n=1-\sqrt{2}\)
=>\(n=1-\sqrt{2}\)
Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)
Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:
\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)
=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)
=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)
=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)
c: 2y+x-3=0
=>2y=-x+3
=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)
Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì
\(-\dfrac{1}{2}\left(m-2\right)=-1\)
=>m-2=2
=>m=4
Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)
Thay x=1 và y=3 vào y=2x+n, ta được:
\(n+2\cdot1=3\)
=>n+2=3
=>n=1
d: 3x+2y=1
=>\(2y=-3x+1\)
=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)
Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì
\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)
Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)
Thay x=1 và y=2 vào (d), ta được:
\(n-\dfrac{3}{2}=2\)
=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)
Sửa đề: (d'): y=-4x+3
a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:
\(0\left(m+2\right)+m=0\)
=>m=0
b:
Sửa đề: Để đường thẳng (d)//(d')
Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)
=>m=-6
c: Sửa đề: cắt đường thẳng d'
Để (d) cắt (d') thì \(m+2\ne-4\)
=>\(m\ne-6\)
d: Để (d) trùng với (d') thì
\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)
=>\(m\in\varnothing\)
a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{2}\\-5< >3\left(đúng\right)\end{matrix}\right.\)
=>\(m+1=-\dfrac{1}{2}\)
=>\(m=-\dfrac{3}{2}\)
b: Thay x=2 vào y=x+3, ta được:
\(y=2+3=5\)
Thay x=2 và y=5 vào (d), ta được:
\(2\left(m+1\right)-5=5\)
=>2(m+1)=10
=>m+1=5
=>m=5-1=4
c: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)x-5=0\cdot\left(m+1\right)-5=-5\end{matrix}\right.\)
=>A(0;-5)
\(OA=\sqrt{\left(0-0\right)^2+\left(-5-0\right)^2}=\sqrt{0^2+5^2}=5\)
Tọa độ B là:
\(\left\{{}\begin{matrix}\left(m+1\right)x-5=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m+1\right)x=5\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\y=0\end{matrix}\right.\)
=>\(B\left(\dfrac{5}{m+1};0\right)\)
\(OB=\sqrt{\left(\dfrac{5}{m+1}-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(\dfrac{5}{m+1}\right)^2}=\dfrac{5}{\left|m+1\right|}\)
Ox\(\perp\)Oy
=>OA\(\perp\)OB
=>ΔOAB vuông tại O
ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot5\cdot\dfrac{5}{\left|m+1\right|}=\dfrac{25}{2\left|m+1\right|}\)
Để \(S_{AOB}=5\) thì \(\dfrac{25}{2\left|m+1\right|}=5\)
=>\(2\left|m+1\right|=5\)
=>|m+1|=5/2
=>\(\left[{}\begin{matrix}m+1=\dfrac{5}{2}\\m+1=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)
a: Thay x=1 và y=2 vào (d), ta được:
\(1\left(a-2\right)+b=2\)
=>a-2+b=2
=>a+b=4(1)
Thay x=3và y=-4 vào (d), ta được:
\(3\left(a-2\right)+b=-4\)
=>3a-6+b=-4
=>3a+b=2(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=4\\3a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b-3a-b=2\\a+b=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2a=2\\a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4-a=4+2=6\end{matrix}\right.\)
b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:
\(0\left(a-2\right)+b=1-\sqrt{2}\)
=>\(b=1-\sqrt{2}\)
Vậy: (d): \(y=x\left(a-2\right)+1-\sqrt{2}\)
Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:
\(\left(2+\sqrt{2}\right)\left(a-2\right)+1-\sqrt{2}=0\)
=>\(\left(a-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)
=>\(a-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)
=>\(a=\dfrac{3\sqrt{2}}{2}\)
a: Để hàm số y=(m-2)x+m+3 nghịch biến trên R thì m-2<0
=>m<2
b: Thay x=3 và y=0 vào y=(m-2)x+m+3, ta được:
\(3\left(m-2\right)+m+3=0\)
=>3m-6+m+3=0
=>4m-3=0
=>4m=3
=>\(m=\dfrac{3}{4}\)
c: Tọa độ giao điểm của hai đường thẳng y=-x+2 và y=2x-1 là:
\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=3\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1+1=0\end{matrix}\right.\)
Thay x=1 và y=0 vào y=(m-2)x+m+3, ta được:
\(1\left(m-2\right)+m+3=0\)
=>m-2+m+3=0
=>2m+1=0
=>2m=-1
=>\(m=-\dfrac{1}{2}\)
Thay x=-1 vào y=3x-2, ta được:
\(y=3\cdot\left(-1\right)-2=-5\)
Để hai đường thẳng này cắt nhau thì \(m^2-2\ne3\)
=>\(m^2\ne5\)
=>\(m\ne\pm\sqrt{5}\)
Thay x=-1 và y=-5 vào \(y=\left(m^2-2\right)x+m-1\), ta được:
\(-\left(m^2-2\right)+m-1=-5\)
=>\(-m^2+2+m-1=-5\)
=>\(-m^2+m+6=0\)
=>\(m^2-m-6=0\)
=>(m-3)(m+2)=0
=>\(\left[{}\begin{matrix}m=3\left(nhận\right)\\m=-2\left(nhận\right)\end{matrix}\right.\)
a: Để hàm số nghịch biến trên R thì 2m-1<0
=>2m<1
=>\(m< \dfrac{1}{2}\)
b; Thay x=-1 và y=0 vào y=(2m-1)x+m-1, ta được:
\(\left(-1\right)\left(2m-1\right)+m-1=0\)
=>-2m+1+m-1=0
=>-m=0
=>m=0
c: Thay x=1 và y=4 vào y=(2m-1)x+m-1, ta được:
\(1\left(2m-1\right)+m-1=4\)
=>2m-1+m-1=4
=>3m=6
=>m=2
Khi m=2 thì \(y=\left(2\cdot2-1\right)x+2-1=3x+1\)
=>3x-y+1=0
Khoảng cách từ O(0;0) đến đường thẳng 3x-y+1=0 là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot3+0\cdot\left(-1\right)+1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{10}}\)
Đáp án đúng là C
Ta có: \(y = \dfrac{{ - x + 10}}{5} = \dfrac{{ - x}}{5} + \dfrac{{10}}{5} = \dfrac{{ - 1}}{5}x + 2\)
Vì hàm số \(y = \dfrac{{ - 1}}{5}x + 2\) có dạng \(y = ax + b\) nên đồ thị của hàm số là một đường thẳng với hệ số góc \(a = \dfrac{{ - 1}}{5}\).
Đồ thị hàm số cắt trục tung tại điểm \(A\left( {0;2} \right)\); Đồ thị hàm số cắt trục hoành tại điểm \(B\left( {10;0} \right)\).
Thay \(x = 200\) vào hàm số ta được: \(y = \dfrac{{ - 1}}{5}.200 + 2 = - 40 + 2 = - 38 \ne 50\). Do đó điểm \(\left( {200;50} \right)\)không thuộc đồ thị hàm số.
Vậy đáp án đúng là đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 10.