K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thay \(x=1;y=-1\) vào phương trình đường thẳng \(\left(d\right)\) , ta có:

\(a\cdot1+-1\left(2a-1\right)+3=0\)

\(\Leftrightarrow a-2a+1+3=0\)

\(\Leftrightarrow a-2a+4=0\)

\(\Leftrightarrow\left(a-1\right)^2+2=0\) (vô lí do \(\left(a-1\right)^2+2\ge2>0\forall a\)

Do đó phương trình ban đầu vô nghiệm

Vậy đường thẳng \(\left(d\right)\) không đi qua điểm M

30 tháng 5 2020

sorry

16 tháng 7 2021

a) (d) đi qua điểm \(M\left(-3;1\right)\Rightarrow1=\left(2m-1\right).\left(-3\right)-4m+5\)

\(\Rightarrow1=-6m+3-4m+5\Rightarrow1=-10m+8\Rightarrow10m=7\Rightarrow m=\dfrac{7}{10}\)

\(\Rightarrow y=\dfrac{2}{5}x+\dfrac{11}{5}\)

b) Gọi \(A\left(x_A;y_A\right)\) là điểm cố định mà (d) luôn đi qua

\(\Rightarrow y_A=\left(2m-1\right)x_A-4m+5\)

\(\Rightarrow2mx_A-x_A-4m+5-y_A=0\Rightarrow2m\left(x_A-2\right)-\left(x_A+y_A-5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=2\\x_A+y_A-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=2\\y_A=3\end{matrix}\right.\Rightarrow A\left(2;3\right)\)

\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(2;3\right)\) cố định

a) Thay x=-3 và y=1 vào (d), ta được:

\(\left(2m-1\right)\cdot\left(-3\right)-4m+5=1\)

\(\Leftrightarrow-6m+3-4m+5=1\)

\(\Leftrightarrow-10m=-7\)

hay \(m=\dfrac{7}{10}\)

NV
8 tháng 7 2021

a.

Để d đi qua M \(\Rightarrow\) tọa độ M thỏa mãn pt d

\(\Rightarrow1=-3\left(2m-1\right)-4m+5\)

\(\Rightarrow m=\dfrac{7}{10}\)

b.

Giả sử tọa độ điểm cố định là \(A\left(x_0;y_0\right)\Rightarrow\) với mọi m ta luôn có:

\(y_0=\left(2m-1\right)x_0-4m+5\)

\(\Leftrightarrow2m\left(x_0-2\right)-\left(x_0+y_0-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0+y_0-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=3\end{matrix}\right.\)

Vậy với mọi m thì d luôn đi qua điểm cố định có tọa độ \(\left(2;3\right)\)

Câu 1: 

Ta có: \(ax+\left(2a-1\right)y+3=0\)

\(\Leftrightarrow\left(2a-1\right)y=-ax-3\)

\(\Leftrightarrow y=\dfrac{-ax-3}{2a-1}\)

Để (d) đi qua điểm M(1;-1) thì

Thay x=1 và y=-1 vào hàm số \(y=\dfrac{-ax-3}{2a-1}\), ta được:

\(\dfrac{-a\cdot1-3}{2a-1}=-1\)

\(\Leftrightarrow-a-3=-1\left(2a-1\right)\)

\(\Leftrightarrow-a-3=-2a+1\)

\(\Leftrightarrow-a+2a=1+3\)

hay a=4

Vậy: a=4

và hệ số góc của (d) là 4

17 tháng 5 2021

`B=(x-x/(x+1))-(1-x/(x+1))`

`đkxđ:x ne +-1`

`=((x^2+x-x)/(x+1))-(x+1-x)/(x+1)`

`=x^2/(x+1)-1/(x+1)`

`=(x^2-1)/(x+1)`

`=((x-1)(x+1))/(x+1)`

`=x-1`

`2)(x-1)^2-25`

`=(x-1)^2-5^2`

`=(x-1-5)(x-1+5)`

`=(x-6)(x+4)`

Bài 1: 

Ta có: \(B=\left(x-\dfrac{x}{x+1}\right)-\left(1-\dfrac{x}{x+1}\right)\)

\(=\left(\dfrac{x\left(x+1\right)-x}{x+1}\right)-\left(\dfrac{x+1-x}{x+1}\right)\)

\(=\dfrac{x^2+x-x-\left(x+1-x\right)}{x+1}\)

\(=\dfrac{x^2-1}{x+1}=x-1\)

a: y=mx+1-2x=x(m-2)+1

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\x\left(m-2\right)+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(m-2\right)=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-1}{m-2}\end{matrix}\right.\)

=>\(A\left(-\dfrac{1}{m-2};0\right)\)

=>\(OA=\dfrac{1}{\left|m-2\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=x\left(m-2\right)+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y=0\left(m-2\right)+1=1\end{matrix}\right.\)

=>B(0;1)

=>OB=1

ΔOAB cân tại O

=>OA=OB

=>\(\dfrac{1}{\left|m-2\right|}=1\)

=>|m-2|=1

=>\(\left[{}\begin{matrix}m-2=-1\\m-2=1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)

b: y=mx-2x+1

Tọa độ I cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1=1\end{matrix}\right.\)

c: O(0;0); I(0;1)

=>O,I đều nằm trên trục Ox

=>Ox là đường thẳng đi qua OI và có phương trình đường thẳng là y=0