Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>O,B,A,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
mà OB=OD(=R)
nên \(OD^2=OH\cdot OA\)
=>\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)
Xét ΔODA và ΔOHD có
\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)
\(\widehat{DOA}\) chung
Do đó: ΔODA đồng dạng với ΔOHD
a: ta có: ON\(\perp\)OB
AB\(\perp\)OB
Do đó: ON//AB
=>ON//AM
Ta có: OM\(\perp\)OC
AC\(\perp\)OC
Do đó: OM//AC
=>OM//AN
Xét tứ giác OMAN có
OM//AN
ON//AM
Do đó: OMAN là hình bình hành
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
=>AO là phân giác của góc MAN
Hình bình hành OMAN có AO là phân giác của góc MAN
nên OMAN là hình thoi
b: Kẻ OH\(\perp\)MN tại H
Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Ta có: ΔBOA vuông tại B
=>\(\widehat{BOA}+\widehat{BAO}=90^0\)
=>\(\widehat{BOA}=60^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: OA là phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}=120^0\)
Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)
=>\(\widehat{BOM}=120^0-90^0=30^0\)
Xét ΔMOA có MO=MA
nên ΔMOA cân tại M
=>\(\widehat{MOA}=\widehat{MAO}=30^0\)
Xét ΔOBM vuông tại B và ΔOHM vuông tại H có
OM chung
\(\widehat{BOM}=\widehat{HOM}\left(=30^0\right)\)
Do đó: ΔOBM=ΔOHM
=>OB=OH=R
Xét (O) có
OH là bán kính
MN\(\perp\)OH tại H
Do đó: MN là tiếp tuyến của (O)
c) AIQM là tgnt
=> góc AMI=AQI (cùng chắn cung AI)
cm góc AMI=IAO (cùng phụ góc AOI)
=>góc AQI=IAO
hay góc AQI=CAH
mà góc AQI+IQB=90
CAH+ACH=90 => AQI+ACH=90
=> góc IQB=ACH
a) Xét \(\Delta AHK\) và \(\Delta AIO\) có:
\(\left\{{}\begin{matrix}\widehat{AHK}=\widehat{AIO}=90^o\\\widehat{HAK}-\text{góc chung}\end{matrix}\right.\)
\(\Rightarrow \Delta AHK\sim\Delta AIO(g.g)\)
\(\Rightarrow\frac{AH}{AK}=\frac{AI}{AO}\Rightarrow AI.AK=AH.AO\). (1)
Xét \(\Delta ANO\) vuông tại N có \(NH\perp AO\)
\(\Rightarrow AH.AO=AN^2\). (2)
Xét \(\Delta ANB\) và \(\Delta ACN\) có:
\(\left\{{}\begin{matrix}\widehat{BAN}-\text{góc chung}\\\widehat{ANB}=\widehat{ACN}=\left(\frac{1}{2}sđ\stackrel\frown{BN}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ANB\sim\Delta ACN(g.g)\)
\(\Rightarrow\frac{AN}{AB}=\frac{AC}{AN}\Rightarrow AN^2=AB.AC\). (3)
Từ (1), (2), (3) suy ra \(AI.AK=AB.AC\).
Mà A, B, C, I cố định nên độ dài AK cố định.
Mà K nằm trên tia AB nên K cố định.