Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: O là trung điểm của AD
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó; BHCD là hình bình hành
b: Vì BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>M là trung điểm của HD
Xét ΔDAH co
M,O lần lượt là trung điểm của DH,DA
nên MO là đường trung bình
=>MO//AH và MO=1/2AH
=>AH=2MO
Chưa ra câu c ^^
a/ Xét tứ giác AEMF có
\(\widehat{EAF}=\widehat{AEM}=\widehat{AFM}=90^o\)
=> Tứ giác AEMF là hcn
b/ Xét t/g AMC có OP là đường trung bình
=> OP // AM
=> BD // AM
=> Tứ giác AMBD là hình thang
d/ Để hình thang AMBD là htc thì AD = BM
=> BM = BC
=> t/g BMC cân tại B có BP là đương trung tuyến
=> CP ⊥ BP tại P
Gọi O là giao của AC và BD
Xét ΔODE vuông tại D và ΔOCE vuông tại C có
OE chung
ED=EC
Do đó: ΔODE=ΔOCE
=>OD=OC
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc OBA=góc ODC
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD
mà OC=OD
nên OA=OB
AC=AO+OC
BD=BO+OD
mà AO=BO và CO=DO
nên AC=BD
Xét tứ giác ABCD có
AB//CD
AC=BD
Do đó: ABCD là hình thang cân