Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai.................kho..................wa..............troi...................thi....................lanh..................tich................ung..................ho.....................minh..................nha................ret.................wa..................troi............thi.................mua.......................vua..............di...............hoc.....................ve.....................uot................lanh...............wa
a) Góc BIC = 180o - (góc IBC + ICB) (1)
+) Ta có có IBC = góc ABC/2 (vì BI là p.g của góc ABC); góc ICB = ACB/2 (vì CI là p/g của góc ACB)
=> góc IBC + ICB = góc (ABC + ACB)/2 = (180o - góc BAC)/2
(1) => góc BIC = 90o + (góc BAC/2)
b) góc BKC = 180o - (góc B2 + C2)
+) góc B2 = B1 = góc ABx/ 2= (180o - ABC)/2
+) góc C2 = góc C1 = góc ACy/2 = (180o - ACB)/2
=> góc B2 + C2 = (360o - ABC - ACB)/2 = (360o - 180o + BAC)/2 = (180o + BAC)/2
(2) => góc BKC = 90o - (BAC/2)
Tia phân giác của \(\widehat{BIC}\)cắt BC ở K.\(\Delta ABC\)có \(\widehat{A}=60^0\)
Xét \(\Delta ABC\)theo định lí tổng ba góc trong một tam giác
\(\widehat{A}+\left(\widehat{B}+\widehat{C}\right)=180^0\)
=> \(60^0+\left(\widehat{B}+\widehat{C}\right)=180^0\)
=> \(\widehat{B}+\widehat{C}=120^0\)
=> \(\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{120^0}{2}=60^0\)
\(\Delta BIC\)có \(\widehat{B_1}+\widehat{C_1}=60^0\)nên \(\widehat{B_1}+\widehat{C_1}+\widehat{BIC}=180^0\)
=> 600 + \(\widehat{BIC}\)= 1800
=> \(\widehat{BIC}=120^0\)
=> \(\widehat{I_1}=60^0,\widehat{I_4}=60^0\)
IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0\)
Xét \(\Delta BIE\)và \(\Delta BIK\)có :
\(\widehat{B_1}=\widehat{B_2}\)
BI cạnh chung
\(\widehat{I_1}=\widehat{I_2}=60^0\left(cmt\right)\)
=> \(\Delta BIE=\Delta BIK\left(g.c.g\right)\)
=> IE = IK(hai cạnh tương ứng) (1)
Xét \(\Delta CID\)và \(\Delta CIK\)có :
\(\widehat{C_1}=\widehat{C_2}\)
CI cạnh chung
\(\widehat{I_3}=\widehat{I_4}=60^0\left(cmt\right)\)
=> \(\Delta CID=\Delta CIK\left(g.c.g\right)\)
=> ID = IK(hai cạnh tương ứng) (2)
Từ (1) và (2) => ID = IE
thanks