K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC vuông tại A có \(\widehat{ACB}=45^0\)(gt)

nên ΔABC vuông cân tại A(Định lí tam giác vuông cân)

Suy ra: AB=AC

mà AB=10cm(gt)

nên AC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{10^2}+\dfrac{1}{10^2}=\dfrac{2}{100}=\dfrac{1}{50}\)

\(\Leftrightarrow AH^2=50\)

hay \(AH=5\sqrt{2}\left(cm\right)\)

Xét ΔABH vuông tại H có \(\widehat{B}=45^0\)(ΔABC vuông cân tại A)

nên ΔABH vuông cân tại H

Suy ra: BH=AH

mà \(AH=5\sqrt{2}\left(cm\right)\)(cmt)

nên \(BH=5\sqrt{2}\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{10\cdot10}{2}=50\left(cm^2\right)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

21 tháng 8 2021

sai rùi đề có phải là tam giác vuông đâu

 

Bạn tự vẽ hình nha =="

AC = AH + HC = 6 + 4 = 10 (cm)

mà AC = AB (tam giác ABC cân tại A)

=> AB = 10 (cm)

Tam giác HAB vuông tại H có:

AB2 = AH2 + BH(định lý Pytago)

102 = 62 + BH2

BH2 = 102 - 62

BH2 = 100 - 36

BH2 = 64

BH = 8 (cm)

Tam giác HBC vuông tại H có:

BC2 = BH2 + CH2

BC2 = 82 + 42

BC2 = 64 + 16

BC2 = 80

BC = 80(cm)

Chúc bạn học tốt ^^

Thu gọnĐúng 0Bình luận 12 tháng 3 2017 lúc 20:14  

Bạn tự vẽ hình nha. Cũng đơn giản lắm....

Xét hai tam giác vuông AHB và BHC có :

AH = HC (= 6cm)

HB là cạnh chung

Do đó : ΔAHB=ΔCHB(cạnh - góc - cạnh)

=> BC = AB ( hai cạnh tương ứng)

Mà AB = AC ( định nghĩa tam giác cân)

=> BC = AB = AH+CH= 12cm

 

Ta có: Xét tứ giác AEHF có: 

+\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^o\)

=>AEHF là hình chữ nhật (dhnb)

=>AH cắt ED tại trung điểm mỗi đường (dhnb)

Mà AH=EF

\(\Rightarrow OE=OF=\dfrac{AH}{2}\\ \Rightarrow HB.HC=AH^2\\ \Rightarrow4.OE.OF=AH.FE.AH^2\)

Vậy HB.HC=4.OE.OF

a) Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh AB(gt)

nên \(AH^2=AE\cdot AB\)(định lí 1 về hệ thức lượng trong tam giác vuông)(1)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh AC(gt)

nên \(AF\cdot AC=AH^2\)(định lí 1 về hệ thức lượng trong tam giác vuông)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)(đpcm)

b) Ta có: \(AE\cdot AB=AF\cdot AC\)(cmt)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\frac{AE}{AC}=\frac{AF}{AB}\)(cmt)

Do đó: ΔAEF∼ΔACB(c-g-c)

\(\widehat{AEF}=\widehat{ACB}\)(3)

Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\frac{BC}{2}\)(định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(CM=\frac{BC}{2}\)(M là trung điểm của BC)

nên AM=CM

Xét ΔAMC có AM=CM(cmt)

nên ΔAMC cân tại M(định nghĩa tam giác cân)

\(\widehat{C}=\widehat{MAC}\)(hai góc ở đáy)(4)

Từ (3) và (4) suy ra \(\widehat{AEF}=\widehat{MAC}\)

Xét ΔAFE vuông tại A có \(\widehat{AFE}+\widehat{AEF}=90^0\)(hai góc nhọn phụ nhau)

\(\widehat{AEF}=\widehat{MAC}\)(cmt)

nên \(\widehat{AFE}+\widehat{MAC}=90^0\)

hay \(\widehat{AFI}+\widehat{IAF}=90^0\)

Xét ΔAIF có \(\widehat{AFI}+\widehat{IAF}=90^0\)(cmt)

nên ΔAIF vuông tại I(định lí đảo của tam giác vuông)

⇒IA⊥IF

hay AM⊥EF(đpcm)

22 tháng 10 2023

a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.

Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.

Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.

b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2

Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.

c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)

Vậy, ta đã chứng minh AF = AE * tan(B).

d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB

Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB

Vậy, ta đã chứng minh CE/BF = AC/AB.

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>AH cắt EF tại trung điểm của mỗi đường và AH=EF

=>OE=OF=AH/2

=>OE*OF=1/4*AH^2

=>4*OE*OF=AH^2=HB*HC