Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$BH, CK$ cùng vuông góc với $AN$ thì nó song song nhau. Như vậy thì $BH, CK$ làm sao giao nhau tại $O$ được?
Em xin lỗi, em chép sai đề bài. Còn đúng ra là \(BH\perp AM\), em có sửa lại đề bài rồi ạ!
1
a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)
rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau
suy ra AM = AN
b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)
rồi chứng minh hai tam giác ABH và ACK bằng nhau
suy ra BH = CK
c) vì hai tam giác ABH và ACK bằng nhau (cmt)
nên AH = AK
d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)
nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)
còn lại tự cm
e) dễ cm tam giác ABC đều
vẽ \(BH\perp AC\)
nên BH vừa là đường cao; phân giác và trung tuyến
dễ cm \(\Delta BHC=\Delta NKC\)
nên \(\widehat{BCH}=\widehat{NCK}=60^0\)
từ đó dễ cm AMN cân và OBC dều
a)Ta có:
△ABC cân tại A⇒\(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét △ABM và △ACN có:
AB=AC (gt)
\(\widehat{ABM}=\widehat{ACN}\) (cmt)
BM=CN (gt)
⇒△ABM = △ACN (cgc)
b)Từ △ABM = △ACN (câu a)
⇒\(\widehat{AMB}=\widehat{ANC}\)(2 góc tương ứng) hay \(\widehat{HMB}=\widehat{KNC}\)
Xét △CKN vuông tại K và △BHM vuông tại H, ta có:
CN=BM (gt)
\(\widehat{KNC}=\widehat{HMB}\) (cmt)
⇒△CKN= △BHM (cạnh huyền- góc nhọn)
⇒CK=BH (2 cạnh tương ứng)
Xét △CKA vuông tại K và △BHA vuông tại H, ta có:
AC=AB (gt)
CK=BH (cmt)
⇒△CKA= △BHA (cạnh huyền- cạnh góc vuông)
⇒KA=HA (2 cạnh tương ứng)
c)Từ △CKN= △BHM (câu b)
⇒\(\widehat{NCK}=\widehat{MBH}\) (2 góc tương ứng)
Mà \(\widehat{NCK}=\widehat{BCO}\)(đối đỉnh); \(\widehat{MBH}=\widehat{CBO}\)(đối đỉnh)
⇒\(\widehat{BCO}=\widehat{CBO}\) ⇒△OBC cân tại O
d)△ABM = △ACN (câu a) ⇒AM=AN (2 cạnh tương ứng)
⇒△AMN cân tại A
\(\widehat{MAN}=70^0\Rightarrow\widehat{ANM}=\widehat{AMN}=\frac{180^0-\widehat{MAN}}{2}=\frac{180^0-70^0}{2}=\frac{110^0}{2}=55^0\)
\(\Rightarrow\widehat{NCK}=\widehat{MBH}=180^0-\left(90^0+55^0\right)=180^0-145^0=35^0\Rightarrow\widehat{OCB}=\widehat{OBC}=35^0\Rightarrow\widehat{BOC}=110^0\)
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
Cm: a) Ta có: góc ABC + góc ABM = 1800 (kề bù)
góc ACN + góc ACB = 1800 (kề bù)
và góc ABC = góc ACB (vì t/giác ABC cân tạo A)
=> góc ABM = góc ACN
Xét t/giác ABM và t/giác ACN
có AB = AC (gt)
góc ABM = góc ACN (cmt)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) ko đề
c) Xét t/giác AHB và t/giác AKC
có góc H1 = góc K1 = 900 (gt)
AB = AC (gt)
góc HAB = góc KAC (vì t/giác ABM = t/giác ACN)
=> t/giác AHB = t/giác AKC (ch - gn)
=> AH = AK (hai cạnh tương ứng)
Xét t/giác AHO và t/giác AKO
có AH = AK (cmt)
góc H1 = góc K1 = 900 (gt)
AO : chung
=> t/giác AHO = t/giác AKO (ch - cgv)
=> HO = KO(hai cạnh tương ứng)
Mà HB + BO = HO
KC + CO = OK
và HB = KC (vì t/giác AHB = t/giác AKC)
=> BO = CO
=> t/giác OBC là t/giác cân tại O
a: HB=HC=6cm
\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đo: ΔABM=ΔACN
Xét ΔBDM vuông tại D và ΔCEN vuông tại E có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔBDM=ΔCEN
c: Xét ΔKBC có
KH là đường cao
KH là đường trung tuyến
Do đó:ΔKBC cân tại K
=>\(\widehat{KBC}=\widehat{KCB}\)
=>\(\widehat{KCB}=\widehat{DBM}\)
=>\(\widehat{KCB}=\widehat{ECN}\)
=>\(\widehat{KCB}+\widehat{BCE}=180^0\)
=>K,E,C thẳng hàng
a) Ta có: \(\left\{{}\begin{matrix}\widehat{ABM}+\widehat{ABC}=180^{^O}\\\widehat{ACN}+\widehat{ACB}=180^{^O}\end{matrix}\right.\left(Kềbù\right)\)
Lại có : \(\widehat{ABC}=\widehat{ACB}\text{ (ΔABC cân tại A)}\)
Suy ra : \(180^{^O}-\widehat{ABC}=180^{^O}-\widehat{ACB}\)
\(\Leftrightarrow\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM,\Delta ACN\) có:
\(AB=AC\) (ΔABC cân tại A)
\(\widehat{ABM}=\widehat{ACN}\) (cmt)
\(BM=CN\left(gt\right)\)
=> \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)
b) Xét \(\Delta AHB,\Delta AKC\) có:
\(\widehat{AHB}=\widehat{AKC}\left(=90^{^O}\right)\)
\(AB=AC\) (ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAK}\) [do \(\Delta ABM=\Delta ACN\left(cmt\right)\)]
=> \(\Delta AHB=\Delta AKC\) (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
c) Xét \(\Delta HMB,\Delta KNC\) có:
\(\widehat{MHB}=\widehat{NKC}\left(=90^{^O}\right)\)
BM = CN (gt)
\(\widehat{HMB}=\widehat{KNC}\) [do \(\Delta ABM=\Delta ACN\left(cmt\right)\)]
=> \(\Delta HMB=\Delta KNC\) (cạnh huyền -góc nhọn)
=> \(\widehat{HBM}=\widehat{KCN}\) (2 góc tương ứng) (1)
Ta có : \(\left\{{}\begin{matrix}\widehat{HBM}=\widehat{OBC}\\\widehat{KCN}=\widehat{OCB}\end{matrix}\right.\) (đối đỉnh) (2)
Từ (1) và (2) => \(\widehat{OBC}=\widehat{OCB}\)
Do đó: ΔOBC cân tại O (đpcm).
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK
c: Ta có: \(\widehat{OBC}=\widehat{HBM}\)
\(\widehat{OCB}=\widehat{KCN}\)
mà \(\widehat{HBM}=\widehat{KCN}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O