K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: HB=HC=6cm

\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

b: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO đo: ΔABM=ΔACN

Xét ΔBDM vuông tại D và ΔCEN vuông tại E có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔBDM=ΔCEN

c: Xét ΔKBC có

KH là đường cao

KH là đường trung tuyến

Do đó:ΔKBC cân tại K

=>\(\widehat{KBC}=\widehat{KCB}\)

=>\(\widehat{KCB}=\widehat{DBM}\)

=>\(\widehat{KCB}=\widehat{ECN}\)

=>\(\widehat{KCB}+\widehat{BCE}=180^0\)

=>K,E,C thẳng hàng

2 tháng 3 2018

* Hình vẽ:

A B C M N D E

a: HB=HC=6cm

\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

b: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO đo: ΔABM=ΔACN

Xét ΔBDM vuông tại D và ΔCEN vuông tại E có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔBDM=ΔCEN

c: Xét ΔKBC có

KH là đường cao

KH là đường trung tuyến

Do đó:ΔKBC cân tại K

=>\(\widehat{KBC}=\widehat{KCB}\)

=>\(\widehat{KCB}=\widehat{DBM}\)

=>\(\widehat{KCB}=\widehat{ECN}\)

=>\(\widehat{KCB}+\widehat{BCE}=180^0\)

=>K,E,C thẳng hàng

6 tháng 5 2021

a, Do tam giác ABC cân tại A(gt) => AB=AC

Do AH\(\perp\)BC(gt)=> \(\widehat{AHB}=\widehat{AHC}=90^o\)

Xét tam giác ABH và tam giác ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^o\left(cmt\right)\)

AB=AC(cmt)

AH chung 

=> tam giác ABH=tam giác ACH(ch-cgv)

b, Do tam giác ABH=tam giác ACH(câu a)

\(\)=> HB=HC (2 cạnh tương ứng)

Do tam giác ABC cân tại A(gt)=> \(\widehat{ABC}=\widehat{ABC}\)

Ta có: \(\widehat{ABC}+\widehat{ABM}=180^o\)(kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^o\)(kề bù)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét tam giác ABM và tam giác ACN có:

AB=AC(câu a)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

=>tam giác ABM và tam giác ACN(c.g.c)

\(\Rightarrow AM=AN\) (2 cạnh tương ứng)

\(\Rightarrow\Delta AMN\) cân tại A

7 tháng 1 2019

a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

Hay \(\widehat{ABD}=\widehat{ACE}\)

Theo định lý Cos ta có

\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)

\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)

Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE

Nên AD = AE hay tam giác ADE cân tại A

b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)

Nên góc KCE = góc DBH

Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)

Xét tam giác HBA và tam giác ACK vuông có :

+ góc HBA = góc KCA

+ AB = AC

\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)

7 tháng 1 2019

c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)

\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)

\(\widehat{HBA}=\widehat{ACK}\)

\(\widehat{ABC}=\widehat{ACB}\)

Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O 

d) Xét tam giác AMB và tam giác AMC 

+ AM chung 

+ BM = MC (gt)

+ AB = AC (gt)

Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c

Và hai góc BAM = góc CAM 

Hay AM là tia phân giác của góc BAC

Xét tam giác AOB và tam giác ACO

+ AB = AC (gt)

+ OB = OC (cmt )

+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)

Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c

Và góc BAO = góc CAO

Hay AO là phân giác của góc BAC

Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng

31 tháng 12 2017

Chương II : Tam giác

31 tháng 12 2017

2) \(\Delta ACE\) cân

BÀI LÀM :

Xét \(\Delta ACH\)\(\Delta ECH\) có :

AH = HE (gt)

\(\widehat{AHC}=\widehat{EHC}\left(=90^o\right)\)

HC: chung

=> \(\Delta ACH\)=\(\Delta ECH\) (cạnh huyền-cạnh góc vuông)

=> CA= CE (2 cạnh tương ứng)

Xét \(\Delta CAE\) có :

AC = CE (cmt)

=> \(\Delta CAE\) cân tại C

15 tháng 1 2020

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(AHK\)\(DHB\) có:

\(AH=DH\left(gt\right)\)

\(\widehat{AHK}=\widehat{DHB}\) (vì 2 góc đối đỉnh)

\(HK=HB\left(gt\right)\)

=> \(\Delta AHK=\Delta DHB\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta AHK=\Delta DHB.\)

=> \(\widehat{AKH}=\widehat{DBH}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AK\) // \(BD.\)

c) Ta có: \(\widehat{AHB}+\widehat{DHB}=180^0\) (vì 2 góc kề bù).

=> \(90^0+\widehat{DHB}=180^0\)

=> \(\widehat{DHB}=180^0-90^0\)

=> \(\widehat{DHB}=90^0.\)

Xét 2 \(\Delta\) vuông \(ABH\)\(DBH\) có:

\(\widehat{AHB}=\widehat{DHB}=90^0\left(cmt\right)\)

\(AH=DH\left(gt\right)\)

Cạnh BH chung

=> \(\Delta ABH=\Delta DBH\) (2 cạnh góc vuông tương ứng bằng nhau).

=> \(AB=BD\) (2 cạnh tương ứng).

d) Xét 2 \(\Delta\) \(ABH\)\(DKH\) có:

\(AH=DH\left(gt\right)\)

\(\widehat{AHB}=\widehat{DHK}\) (vì 2 góc đối đỉnh)

\(BH=KH\left(gt\right)\)

=> \(\Delta ABH=\Delta DKH\left(c-g-c\right)\)

=> \(\widehat{ABH}=\widehat{DKH}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(DK.\)

Lại có: \(AB\perp AC\) (vì \(\Delta ABC\) vuông tại A).

=> \(DK\perp AC.\)

\(KI\perp AC\left(gt\right)\)

=> \(DK\)\(KI\) trùng nhau.

=> 3 điểm \(D,K,I\) thẳng hàng (đpcm).

Chúc bạn học tốt!

28 tháng 12 2023

δγΣαγηθλΣϕΩβΔ

28 tháng 12 2023

Xét △AMD và △DMC

   AB=AC(giả thuyết)

   Cạnh AM là cạnh chung 

   BM= CM ( M là trung điểm của cạnh BC)

=> △AMD=△DMC

Sorry bạn nhé mk chỉ bt làm câu a thui ☹
   

27 tháng 7 2019

Câu a), b), c) bạn tham khảo tại đây nhé: Câu hỏi của Sky Mtp

Còn câu d) thì ở đây nhé: Câu hỏi của Hana Huyền Ngọc

Chúc bạn học tốt!