K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

a, Do tam giác ABC cân tại A(gt) => AB=AC

Do AH\(\perp\)BC(gt)=> \(\widehat{AHB}=\widehat{AHC}=90^o\)

Xét tam giác ABH và tam giác ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^o\left(cmt\right)\)

AB=AC(cmt)

AH chung 

=> tam giác ABH=tam giác ACH(ch-cgv)

b, Do tam giác ABH=tam giác ACH(câu a)

\(\)=> HB=HC (2 cạnh tương ứng)

Do tam giác ABC cân tại A(gt)=> \(\widehat{ABC}=\widehat{ABC}\)

Ta có: \(\widehat{ABC}+\widehat{ABM}=180^o\)(kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^o\)(kề bù)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét tam giác ABM và tam giác ACN có:

AB=AC(câu a)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

=>tam giác ABM và tam giác ACN(c.g.c)

\(\Rightarrow AM=AN\) (2 cạnh tương ứng)

\(\Rightarrow\Delta AMN\) cân tại A

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

b: góc MBD=góc ECN

=>góc KBC=góc KCB

=>K nằm trên trung trực của BC

=>A,H,K thẳng hàng

2 tháng 5 2022

mọi người lamf giúp mình vs ak

 

2 tháng 5 2022

mình đang cần gấp mọi ng giúp mình với ạ

 

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔABM và ΔACN có 

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó;ΔABM=ΔACN

Suy ra: \(\widehat{M}=\widehat{N}\)

Xét ΔEBM vuông tại E và ΔFCN vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔEBM=ΔFCN

Suy ra: \(\widehat{EBM}=\widehat{FCN}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

mà AB=AC

và HB=HC

nên A,H,I thẳng hàng

22 tháng 2 2022

đừng nói như vậy mà khocroi

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔDMB vuông tại M và ΔENC vuông tại N có

DB=EC

\(\widehat{D}=\widehat{E}\)

Do đó: ΔDMB=ΔENC

Suy ra: \(\widehat{DBM}=\widehat{ECN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

=>ΔOBC cân tại O

=>OB=OC

hay O nằm trên đường trung trực của BC(1)

Ta có:AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO⊥BC

=>AO⊥DE

Ta có: ΔADE cân tại A

mà AO là đường cao

nên AO là phân giác

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

a: Xét ΔABH và ΔACK có

AB=AC
\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

hay ΔAHK cân tại A

b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

\(\widehat{MAB}=\widehat{NAC}\)

Do đó: ΔAMB=ΔANC

Suy ra: AM=AN

hay ΔAMN cân tại A