Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABE\) và \(\Delta ACD\)
có: + AE=AD(gt)
+A: là góc chung
+AB=AC(do \(\Delta ABC\) cân tại A)
Vậy \(\Delta ABE\)=\(\Delta ACD\) (c.g.c)
=> BE=CD( 2 cạnh tương ứng)
b) Vì \(\Delta ABE\) =\(\Delta ACD\) (cmt)
nên: góc ABE=góc ACD( 2 góc tương ứng)
c) .\(\Delta KBC\) cân tại K
. Ta có: góc B = \(B_1+B_2\)
C=\(C_1=C_2\)
B=C(gt);\(B_1=C_1\) (cmt)
=> \(B_2=C_2\)
Do đó \(\Delta KBC\) cân tại K
a: Xét ΔABE và ΔACDcó
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b: ΔABE=ΔACD
=>góc ABE=góc ACD
c: góc ABE+góc KBC=góc ABC
góc ACD+góc KCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc KBC=góc KCB
=>KB=KC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
a) Xét tam giác ABE và tam giác ADC:
AE=AC(theo gt tam giác ABC cân )
góc A chung
AE=AD(theo gt)
=> Tam giác ABE=tam giác ADC(c.g.c)
nên BE=CD(dpcm)
b) Vì tam giác ABE=tam giác ACD nên góc ABE=góc ACD( 2 góc tương ứng)
c) Xét Tam giác DKB và tam giác EKC
góc DKB=góc EKC(đối đỉnh)
AB=AC(tam giác ABC cân) mà AD=AE (gt) =>DB=EC
góc DBK= góc ECK
=>tam giác DKB=tam giác EKC(g.c.g)
=>KB=KC(2 cạnh tương ứng)
=>tam giác KBC là tam giác cân .
a) Xét \(\Delta\) BAE và \(\Delta\) CAD có:
AB = AC ( \(\Delta\) ABC cân tại A )
BAE = CAD ( chung góc A )
AD = AE ( giả thiết )
.=> \(\Delta\) BAE = \(\Delta\) CAD ( c . g . c ) (1)
=> BE = CD ( 2 cạnh tương ứng )
Vậy BE = CD ( đpcm)
b) Ta có: \(\Delta\) BAE = \(\Delta\) CAD ( chứng minh (1) )
=> ABE = ACD ( 2 góc tương ứng )
Vậy ABE = ACE ( đpcm )
c) Ta có: \(\Delta\) ABC cân tại A ( giả thiết )
=> ABC = ACB ( tính chất tam giác cân )
hay DBC = ECB (2)
Xét \(\Delta\) DBC và \(\Delta\) ECB có:
CD = BE ( chứng minh a)
DBC = ECB ( chứng minh (2) )
BC là cạnh chung
=> \(\Delta\) DBC = \(\Delta\) ECB ( c . g . c )
=> DCB = EBC ( 2 góc tương ứng )
hay KCB = KBC
Xét \(\Delta\) KBC có: KCB = KBC
=> \(\Delta\) KBC cân tại K
Vậy \(\Delta\) KBC cân tại K
Chuk bn hk tốt !
Nguyễn Thuỳ Linh Hình như bài này t lm cho c r mà nhỉ
( Hình tự vẽ )
a) +) Xét \(\Delta\)ABE và \(\Delta\)ACD có
AB = AC ( gt)
\(\widehat{BAC}\) : góc chung
AE = AD ( gt)
=> \(\Delta\)ABE = \(\Delta\)ACD (c-g-c)
b) Theo câu a ta có \(\Delta\)ABE = \(\Delta\)ACD
=> BE = CD ( 2 cạnh tương ứng )
c) +) Xét \(\Delta\) ABC cân tại A
=> \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (1) ( tính chất tam giác cân )
+) Xét \(\Delta\)AED có AE = AD ( gt)
=> \(\Delta\)AED cân tại A
=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\) (2) ( tính chất tam giác cân )
Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{AED}\)
Mà 2 góc này ở vị trí đồng vị
=> ED // BC
@@ Hc tốt
Takigawa Miu_
Tự kẻ hình nha !!!
a)Tam giác ABC cân tại A =>AB=AC;góc B= góc C
D thuộc AB => BD+AD= AB
C thuộc AC =>CE + EA = AC
Mà AB=AC nên AD=EA
Xét tam giác AEB và tam giác ADC:
AD=EA( cmt)
AB=AC(cmt)
góc A: góc chung
=>tam giác AEB = tam giác ADC (c.g.c)
=>BE=CD(2 cạnh tương ứng)
b)theo a) ta có tam giác AEB=tam giác ADC=>góc ABE= góc ACD( 2 góc tương ứng)
c)ta có góc B= góc C và góc ABE = góc ACD
Mà góc ABE + góc EBC = goc B
Góc ACD +góc DCB= góc C =>góc EBC = góc DCB
Tam giác KBC có: góc EBC = góc DCB =>tam giác KBC là tam giác cân tại K
* nhớ k cho mk nhé!!!
hướng dẫn:
a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)
** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**
=> BE = CD
b) (1) => ABE^ = ACD^
c) Dễ thấy BD = CE
từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)
=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân
a) Vì tg ABC là tg cân nên AB = AC mà AD = AE => AB – AD = AC – AE
=> BD = CE => ĐPCM
Xin lỗi mình chỉ giải đc phần a thôi
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
góc A chung
AE=AD
=>ΔABE=ΔACD
c: Xét ΔIDB và ΔIEC có
góc IDB=góc IEC
DB=EC
góc IBD=góc ICE
=>ΔIDB=ΔIEC
d: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
=>góc BAI=góc CAI
=>AI là phân giác của góc BAC
Ta có hình vẽ:
a/ Xét \(\Delta ABE\) và \(\Delta ACD\) có:
AB = AC (gt)
\(\widehat{A}:chung\)
AE = AD (gt)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\left(đpcm\right)\)
b/ Vì \(\Delta ABE=\Delta ACD\left(ýa\right)\)
\(\Rightarrow\left\{{}\begin{matrix}BE=CD\\\widehat{ABE}=\widehat{ACD}\end{matrix}\right.\) (đpcm)
c/ Ta có: AD + BD = AB
AE + CE = AC
mà AD = AE(gt) ; AB = AC(gt)
=> BD = CE
Xét \(\Delta DBC\) và \(\Delta ECB\) có:
BD = CE (cmt)
\(\widehat{DBC}=\widehat{ECB}\) (\(\Delta ABC\) cân tại A)
BC: chung
=> \(\Delta DBC=\Delta ECB\left(c-g-c\right)\)
=> \(\widehat{BDC}=\widehat{CEB}\) (g t/ứng)
Xét \(\Delta KBD\) và \(\Delta KCE\) có:
\(\widehat{ABE}=\widehat{ACD}\left(đãcm\right)\)
BD = CE (đã cm)
\(\widehat{BDC}=\widehat{CEB}\left(cmt\right)\)
=> \(\Delta KBD=\Delta KCE\left(g-c-g\right)\)
=> KB = KC (c t/ứng)
=> \(\Delta KBC\) là tam giác cân tại K
Tự vẽ hình nhoa!
a) Vì \(\Delta ABC\) cân tại A
\(\Rightarrow AB=AC\) và \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABE\) và \(\Delta ACD\) có:
\(AB=AC\)
\(\widehat{A}\) chung
\(AE=AD\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)
b) Vì \(\Delta ABE=\Delta ACD\) (câu a)
\(\Rightarrow BE=CD\) và \(\widehat{ABE}=\widehat{ACD}\)
c) Ta có: \(\widehat{ABC}-\widehat{ABE}=\widehat{ACB}-\widehat{ACD}\)
\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)
hay \(\widehat{KBC}=\widehat{KCB}\)
\(\Rightarrow\Delta KBC\) cân tại K.