K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Nguyễn Thuỳ Linh               Hình như bài này t lm cho c r mà nhỉ

( Hình tự vẽ )

a) +) Xét \(\Delta\)ABE và \(\Delta\)ACD có

AB = AC ( gt)

\(\widehat{BAC}\) : góc chung

AE = AD ( gt)

=> \(\Delta\)ABE = \(\Delta\)ACD  (c-g-c)

b) Theo câu a ta có  \(\Delta\)ABE = \(\Delta\)ACD 

=> BE = CD  ( 2 cạnh tương ứng )

c) +) Xét  \(\Delta\) ABC cân tại A 

=> \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)  (1)    ( tính chất tam giác cân )

+) Xét \(\Delta\)AED có AE = AD  ( gt)

=> \(\Delta\)AED cân tại A

=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)  (2)    ( tính chất tam giác cân )

Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{AED}\)

Mà 2 góc này ở vị trí đồng vị

=> ED // BC

@@ Hc tốt

Takigawa Miu_

a: Xét ΔADE có AD=AE

nên ΔADE cân tại A

c: Xét ΔABC có 

AD/AB=AE/AC

Do đó: DE//BC

6 tháng 1 2022

Cảm ơn bạnhaha

a, Xét ΔABE và ΔACD có :

 AB = AC(gt)

^A - chung

AE = AD (gt)

=> ΔABE = ΔACD (c.g.c)

=> BE=CD ( 2 cạnh  tương ứng)

b,vì tam giác MBD= tam giác MEC:

=> DM=EM ( 2 cạnh đồng vị)

 XÉt  tam giác AMD và tam giác AME

   AD =AE ( Gt)

DM=EM ( CMT)

AM cạnh chung

=> tam giác AMD=AME ( c.c.c )

chúc bạn học tốt

a: Xét ΔABC co AD/AB=AE/AC

nên DE//BC

b: Xét ΔDBM và ΔECM có

DB=EC

góc B=goc C

BM=CM

=>ΔDBM=ΔECM

b: Xét ΔADM và ΔAEM có

AD=AE
AM chung

MD=ME

=>ΔAMD=ΔAME

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

7 tháng 1

chưa hiểu phần song song

 

a, Xét \(\Delta\)ABE và \(\Delta\)ACD cs :

AB = AC(gt)

^A - chung

AE = AD (gt)

=> \(\Delta\)ABE = \(\Delta\)ACD (c.g.c)

b) Từ \(\Delta\)ABE = \(\Delta\)ACD (câu a)

=> đpcm 

A D E B C

a) Xét \(\Delta ABE\)và \(\Delta ACD\)có:

\(AB=AC\left(gt\right)\)

\(\widehat{A}\)là góc chung

\(AD=DE\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow BE=CD\)( 2 cạnh tương ứng )

b) Đề sai, điểm M đâu???

c) Ta có: \(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)

Lại có: \(\Delta ABC\)cân tại A ( gt )

\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{ABC}\)

mà 2 góc này ở vị trí đồng vị

\(\Rightarrow DE//BC\left(đpcm\right)\)

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD = DEb )...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
14 tháng 6 2023

giúp m v :(

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

b: Xét ΔABE và ΔACD có

AB=AC

góc A chung

AE=AD

=>ΔABE=ΔACD

c: Xét ΔIDB và ΔIEC có

góc IDB=góc IEC

DB=EC

góc IBD=góc ICE

=>ΔIDB=ΔIEC

d: Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

=>ΔABI=ΔACI

=>góc BAI=góc CAI

=>AI là phân giác của góc BAC

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

21 tháng 9 2023

Tham khảo:

a) Vì tam giác ABC vuông cân tại A

\( \Rightarrow \) \(\widehat B = \widehat C = {45^o}\)(2 góc ở đáy bằng nhau)

Xét tam giác AED có :

AE = AD

AC vuông góc với AB

\( \Rightarrow \) Tam giác AED vuông cân tại A

\( \Rightarrow \widehat {ADE} = \widehat {AED} = {45^o}\)

Mà \(\widehat {AED};\widehat {CEF}\)là 2 góc đối đỉnh \( \Rightarrow \widehat {AED} = \widehat {CEF} = {45^o}\)

Xét tam giác CEF áp dụng định lí tổng 3 góc trong tam giác ta có :

\( \Rightarrow \widehat F + \widehat C + \widehat E = {180^o}\)

\( \Rightarrow \widehat F = {180^o} - {45^o} - {45^o} = {90^o} \Rightarrow EF \bot BC \Rightarrow DE \bot BC\)

b) Vì DE vuông góc với BC \( \Rightarrow \) DE là đường cao của tam giác BCD

Vì AC cắt DE tại E nên E là trực tâm tam giác BCD (Do AC cũng là đường cao của tam giác BCD)

\( \Rightarrow \)BE cùng là đường cao của tam giác BCD (định lí 3 đường cao trong tam giác đi qua trực tâm)

\( \Rightarrow \)BE vuông góc với DC