Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác CME có :
BM=ME (gt)
Góc AMB = góc CME ( đối đỉnh )
AM = MC ( gt )
-> vậy tam giác AMB = tam giác CME (c.g.c)
b)
a/(c.g.c)
b/ CE=AB ( cặp cạnh tương ứng)
Mà: AB<BC( cạnh huyền lớn nhất)
Nên CE<BC
c/góc ABM=góc CEM(cặp góc tương ứng) (1)
Xét tam giác BCE có: CE<BC( CMT)
Suy ra góc CEM<góc MBC (2) ( Quan hệ giữa góc và cạnh đối diện trong 1 tam giác)
Vậy: từ (1) và (2), ta có: góc ABM< góc MBC
d/góc ABM=góc CEM, lại ở vị trí SLT nên AE//BC
a: Xét ΔAMB và ΔCME có
MA=MC
góc AMB=góc CME
MB=ME
Do đó:ΔAMB=ΔCME
b: Tacó: CE=AB
mà AB<BC
nên CE<BC
d: Xét tứ giác ABCE có
M là trung điểm của AC
M là trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra: AE//BC
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hình bình hành
=>AE=DB và AE//DB
=>AE//BC
b: BD=AE
mà AE<AC
nên BD<AC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
mà AE//DC
nên A,E,F thẳng hàng
Cho mik hỏi chút với ạ, làm sao bạn chứng minh được AE<AC ạ?
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔDMB vuông tại M và ΔENC vuông tại N có
DB=EC
\(\widehat{D}=\widehat{E}\)
Do đó: ΔDMB=ΔENC
Suy ra: \(\widehat{DBM}=\widehat{ECN}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
=>ΔOBC cân tại O
=>OB=OC
hay O nằm trên đường trung trực của BC(1)
Ta có:AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO⊥BC
=>AO⊥DE
Ta có: ΔADE cân tại A
mà AO là đường cao
nên AO là phân giác
a) Xét ΔBED và ΔBAD có
BE=BA(gt)
\(\widehat{EBD}=\widehat{ABD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBED=ΔBAD(c-g-c)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔABH=ΔACK