K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có : ^BAK+^KAC=90 độ (1)

^HBA+^BAH ( hay ^BAK)=90 độ (2)

Từ (1) và (2)=> ^KAC=^HBA ( vì đều bằng 90 độ - ^BAK )

Xét 🔺BHA và 🔺AKC có :

^BHA = ^AKC = 90 độ

AB=AC ( vì 🔺ABC vuông cân ở A )

^KAC = ^HBA ( chứng minh trên )

Suy ra 🔺BHA = 🔺AKC ( cạnh huyền - góc nhọn )

=> BH = AK ( 2 góc tương ứng )

b, ΔMBH = ΔMAK:

Ta có: BH ⊥ AK; CK ⊥ AE.

=> BH // CK.

=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]

Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]

Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]

AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]

Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]

Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.

Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.

Xét ΔMBH và ΔMAK có:

+ MA = MB (cmt)

HBMˆ=MAKˆHBM^=MAK^ (cmt)

+ BH = AK (câu a)

=> ΔMBH = ΔMAK (c - g - c)

c, ΔMHK vuông cân:

Xét ΔAMH và ΔCMK có:

+ AH = CK (ΔABH = ΔCAK)

+ MH = MK (ΔMBH = ΔMAK)

+ AM = CM (AM là trung tuyến)

=> ΔAMH = ΔCMK (c - c - c)

=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)

mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o

=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o

hay HMKˆ=90oHMK^=90o.

ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.

=> ΔHMK vuông cân tại M.

15 tháng 2 2020

con 💖*•.¸♡ ₷ℴá¡↭ℳųộ¡↭2ƙ7 ♡¸.•*mày copy thôi chứ

13 tháng 3 2016

Bạn vẽ hình ra đã rồi nhìn lời giải nhá

a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC

    TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)

    Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2) 

 Từ (1) và (2) -> g' ABH = g' CAH 

Xét TG' AHB và TG' AKC có

      g' AHB = g' AKC ( = 90 )  

         AB = AC  ( gt )

       g' HAB = g' KAC ( cmt )

 -> TG' AHB = TG' AKC ( ch - gn )

-> BH = Ak

      

    

19 tháng 2 2022

undefined

19 tháng 2 2022

undefined

Bài làm

a) Xét tam giác ABC có: 

\(\widehat{BAE}+\widehat{EAC}=90^0\)( Hai góc phụ nhau )

Xét tam giác AKC có:

\(\widehat{EAC}+\widehat{KCA}=90^0\)

=> \(\widehat{BAE}=\widehat{EAC}\)

Xét tam giác BHA và tam giác AKC có:

\(\widehat{BHA}=\widehat{AKC}=90^0\)

Cạnh huyền AB = AC ( Do tam giác ABC vuông cân ở A )

Góc nhọn: \(\widehat{BAE}=\widehat{EAC}\)( cmt )

=> Tam giác BHA = Tam giác AKC ( Cạnh huyền - góc nhọn )

=> BH = AK ( hai cạnh tương ứng )

b) Vì tam giác ABC vuông cân ở A

Mà AM là trung tuyến ( Do M là trung điểm BC )

=> AM cũng là đường cao của BC

=> AM vuông góc với BC

Xét tam giác AME vuông ở H có:

\(\widehat{MEA}+\widehat{MAE}=90^0\)

Xét tam giác KEC vuông ở K có:

\(\widehat{KEC}+\widehat{KCE}=90^0\)

Mà \(\widehat{MEA}=\widehat{KEC}\)( hai góc đối đỉnh )

=> \(\widehat{MAE}=\widehat{KCE}\)                         (1) 

Ta có: CK vuông góc với AK

BH vuông góc với AK

=> CK // BH 

=> \(\widehat{KCE}=\widehat{EBH}\)                                 (2)

Từ (1) và (2) => \(\widehat{EBH}=\widehat{MAE}\)

Xét tam giác MAC vuông ở M có:

\(\widehat{MCA}+\widehat{MAC}=90^0\)

Xét tam giác ABC vuông ở A có:

\(\widehat{ABC}+\widehat{MCA}=90^0\)

=> \(\widehat{MAC}=\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MCA}\)( Do tam giác ABC vuông cân ở A )

=> \(\widehat{MAC}=\widehat{MCA}\)

=> Tam giác MAC vuông cân ở M

=> MA = MC

Mà BM = MC ( Do M trung điểm BC )

=> MA = MC = BM

Xét tam giác MBH và tam giác MAK có:

AM = BM ( cmt )

\(\widehat{EBH}=\widehat{MAE}\)( cmt )

AK = BH ( cmt )

=> Tam giác MBH = tam giác MAK ( c.g.c )

c) Vì tam giác MBH = tam giác MAK ( cmt )

=> \(\widehat{MKH}=\widehat{BHM}\)                                (3)

=> MK = MH

=> Tam giác MHK cân ở M                   (4)

Xét tam giác BHE vuông ở H có:

\(\widehat{BHM}+\widehat{MHK}=90^0\)( Hai góc phụ nhau )                   (5)

Thay (3) vào (5) ta được: \(\widehat{MKH}+\widehat{MHK}=90^0\)                           

=> Tam giác MHK vuông ở M                     (6) 

Từ (4) và (6) => Tam giác MHK vuông cân ở M

# Mik thấy nhiều bạn khó câu này nên mik lm #

8 tháng 2 2020

Chịu !!

18 tháng 11 2017

a. Xét tam giác BAH và tam giác CAK

BHA= CKA=90*

BA=AC (gt)

BAH=CAK ( cùng phụ với HAC)

=> tam giác BAH=tam giác CAK( ch-gn)

=> BH=AK (2 cạnh tương ứng)

b. Gọi I là giao điểm của AM và KC

Vì BH vg AH; Ck vg AH => BH// CK

=> HBM=KCM (so le trong )

Do tam giác IMC vuông tại M => MIC+MCI= 90*

Lại có tam giác AKI vuông tại K nên KAI+KIA=90*

Mà KIA= MIC( đối đỉnh)=> MIC= AKI hay MCK= KAM => AKM = MBH

Xét tam giác BHM và tam giác AKM

BH= AK ( theo câu a)

HBM= AKM( c/m trên)

BM = AM ( AM là trung tuyến tam giác vuông)

=> tam giác BHM= tam giác AKM(cgc)

c. Theo câu b, 

tam giác BHM= tam giác AKM(cgc)

=> HM= KM(2 cạnh tương ứng)

Ta có BMK+KMA=BMA=90*

Mà HMB= KMA=> BMK+HMB=90*=HMK

Xét tam giác KMH có: HMK=90*; HM=KM => tam giác KMH vuông cân tại M

18 tháng 11 2017

Bạn vẽ hình đi