K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

Hình bạn tự vẽ nhé!

Giải:

Vì D là trung điểm của AC (gt)

nên AD = CD

Xét \(\Delta ABD\) và \(\Delta CED\) có:

AD = CD (chứng minh trên)

\(\widehat{ADB}=\widehat{CDE}\)(2 góc đối đỉnh)

ED = BD (gt)

\(\Rightarrow\Delta ABD=\Delta CED\) (c.g.c)   (1)

\(\Rightarrow\widehat{ABD}=\widehat{CED}\) (2 góc tương ứng)  

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)AB // CD  (dấu hiệu nhận biết)  (2)

Từ (1), (2) \(\Rightarrowđpcm\)

b) Ta có: AF _|_ BD tại F

              CG _|_ DE tại G

\(\Rightarrow\hept{\begin{cases}\widehat{AFD}=90^o\\\widehat{CGD}=90^o\end{cases}}\Rightarrow\widehat{AFD}=\widehat{CGD}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\) AF // CG (dấu hiệu nhận biết) (3)

\(\Rightarrow\widehat{FAH}=\widehat{DCG}\) (2 góc so le trong)

Xét \(\Delta ADF\) và \(\Delta CDG\) có:

AD = CD (chứng minh trên)

\(\widehat{ADF}=\widehat{CDG}\) (2 góc đối đỉnh)

\(\widehat{FAH}=\widehat{DCG}\) (chứng minh trên)

\(\Rightarrow\Delta ADF=\Delta CDG\) (g.c.g)

\(\Rightarrow\) DF = DG (2 cạnh tương ứng)  (4)

Từ (3), (4) \(\Rightarrowđpcm\)

c) Xét \(\Delta CDE\) có:

Giao điểm 2 đường thẳng CG và EI là M

CG, EI đều là đường cao của \(\Delta CDE\)

\(\Rightarrow\)DM cũng là đường cao của \(\Delta CDE\)

\(\Rightarrow DM\perp AB\)(5)

Xét \(\Delta ABD\) có:

Giao điểm 2 đường thẳng CG, EI là M

AF, BH đều là đường cao của \(\Delta ABD\)

\(\Rightarrow DK\) cũng là đường cao của \(\Delta ABD\)

\(\Rightarrow DK\perp AB\) (6)

Từ (5), (6) suy ra đpcm

30 tháng 11 2021

a: Xét tứ giác ABCE có 

D là trung điểm của AC

D là trung điểm của BE

Do đó: ABCE là hình bình hành

Suy ra: AB//CE

15 tháng 12 2019

Bạn có thể tự vẽ hình chứ ? Tại hình hơi rối nên mình lười vẽ =)))
a) Xét ∆ABD và ∆CED có :
DA = DC (D là trung điểm của AC)
∠ADB = ∠CDE (2 góc đối đỉnh)
DB = DE (GT)
=> ∆ABD = ∆CED (c.g.c)
=> ∠ABD = ∠CED (2 góc tương ứng)
    Mà 2 góc này ở vị trí so le trong
=> AB // CE (DHNB)
b) Ta có : AF ⊥ BD (GT)
    Mà CG ⊥ DE (GT)
=> AF // CG (Tính chất)
=> ∠DAF = ∠DCG (2 góc so le trong) (1)
Xét ∆ADF và ∆CDG có :
∠DAF = ∠DCG (Theo (1))
DA = DC (D là trung điểm của AC)
∠ADF = ∠CDG (2 góc đối đỉnh)
=> ∆ADF = ∆CDG (g.c.g)
=> DF = DG (2 cạnh tương ứng)
c) Mình cũng có chứng minh thẳng hàng mấy lần rồi nhưng nhìn hình thì mình không tìm được các yếu tố có thể chứng minh nên bạn nhờ ai khác nhé.

22 tháng 12 2019

A E C B K H D I M G F

a)Xét \(\Delta ABD\)và \(\Delta CED\)có:

\(AD=DC\)

\(\widehat{ADB}=\widehat{EDC}\)

\(BD=CD\)

\(\Rightarrow\Delta ABD=\Delta CED\left(c.g.c\right)\)

b)Ta có:

\(\widehat{AFB}=\widehat{EGC}=90^o\)(so le trong)

\(\Rightarrow AF//CG\)

Do \(AF//CG\)

\(\Rightarrow\widehat{FAD}=\widehat{GCD}\)

Xét \(\Delta ADF\)\(\Delta CDG\)có:

\(\widehat{FAD}=\widehat{GCD}\)

\(AD=CD\)

\(\widehat{ADF}=\widehat{CDG}\)(đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta CDG\left(g.c.g\right)\)

\(\Rightarrow DF=DG\)

15 tháng 4 2020

Các trường hợp bằng nhau của tam giác vuông

15 tháng 4 2020

mơn bn nha

​Bài 1: Cho ΔABC có ba góc nhọn. Vẽ BD ⊥ AC tại D, CE ⊥ AB tại E. Trên tia đối của tia BD lấy điểm F sao cho BF = AC, trên tia đối của tia CE lấy điểm G sao cho CG = AB. Chứng minh: AF = AG và AF ⊥ AG Bài 2: Cho góc bẹt xOy có tia phân giác Ot. Trên tia Ot lấy điểm A, B (A nằm giữa O và B). Lấy điểm C ∈ Ox sao cho OC=OB, lấy điểm D ∈ Oy sao cho OD=OA a) Chứng minh AC=BD và AC ⊥ BD b) Gọi M, N lần lượt là trung điểm của...
Đọc tiếp

​Bài 1:

Cho ΔABC có ba góc nhọn. Vẽ BD ⊥ AC tại D, CE ⊥ AB tại E. Trên tia đối của tia BD lấy điểm F sao cho BF = AC, trên tia đối của tia CE lấy điểm G sao cho CG = AB. Chứng minh: AF = AG và AF ⊥ AG

Bài 2:

Cho góc bẹt xOy có tia phân giác Ot. Trên tia Ot lấy điểm A, B (A nằm giữa O và B). Lấy điểm C ∈ Ox sao cho OC=OB, lấy điểm D ∈ Oy sao cho OD=OA

a) Chứng minh AC=BD và AC ⊥ BD

b) Gọi M, N lần lượt là trung điểm của AC và BD. Chứng minh OM=ON

c) Tính các góc của ΔMON

d) Chứng minh AD ⊥ BC

Bài 3:

Cho ΔABC có ba góc nhọn. Vẽ AH ⊥ BC (H ∈ BC). Vẽ HI ⊥ AB tại I, vẽ HK ⊥ AC tại K. Lấy E, F sao cho I là trung điểm HE, K là trung điểm của HF, EF cắt AB, AC lần lượt tại M, N

a) Chứng minh MH=ME và chu vi ΔMHN bằng EF

b) Chứng minh AE=AF

c) Nếu biết góc BAC = 60 độ. Khi đó hãy tính các góc của ΔAEF

( Chu vi của một tam giác bằng tổng độ dài 3 cạnh của Δ

1
16 tháng 11 2019

Giúp mik vs sáng mai mik đi học rồi khocroi