K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE(ΔBAD=ΔBED)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(1)

ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(2)

ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Từ (1),(2),(3) suy ra B,D,I thẳng hàng

 

25 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE(ΔBAD=ΔBED)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: ΔDAF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của CF(1)

ta có: IF=IC

=>I nằm trên đường trung trực của CF(2)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(3)

Từ (1),(2),(3) suy ra B,D,I thẳng hàng

10 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

Xét ΔDAF và ΔDEC có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DF=DC

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: ΔDAF=ΔDEC

=>\(\widehat{DAF}=\widehat{DEC}\)

mà \(\widehat{DEC}=90^0\)

nên \(\widehat{DAF}=90^0\)

Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)

=>\(\widehat{BAF}=90^0+90^0=180^0\)

=>B,A,F thẳng hàng

Xét ΔBFC có BA/AF=BE/EC

nên AE//FC

27 tháng 12 2021

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD