Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác HAB và tam giác ABC , có :
A^ = H^ = 90o
B^ : góc chung
=> tam giác ABH ~ tam giác CBA ( g.g)
ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 62 + 82 = BC2
=> BC2 = 100
=> BC=10
Vì tam giác ABH ~ tam giác CBA ( cmt)
=> \(\dfrac{AB}{BC}\)= \(\dfrac{AH}{AC}\)
=> AH . BC = AB . AC
=> AH.10= 6.8
=> AH = 4,8
b)
Ta có :
A^1 + B^ = 90o
B^ + C^ = 90o
=> A^1 = C^
Xét tam giác HAC , và tam giác HAB , có :
A^1 = C^ ( cmt )
H^1 = H^2 = 90o
=> tam giác HAB ~ tam giác HCA ( g.g)
=> \(\dfrac{AH}{HC}\)= \(\dfrac{HB}{HA}\)=> AH2 = HC . HB
A B C H 1 2
a) Xét tam giác ABC và tam giác HBA có:
\(\hept{\begin{cases}\widehat{B}chung\\\widehat{BAC}=\widehat{BHA}=90^0\end{cases}\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)}\)(3)
b) Vì tam giác BHA vuông tại H(gt) nên \(\widehat{B}+\widehat{A1}=90^0\)( 2 góc bù nhau ) (1)
Ta có: \(\widehat{A1}+\widehat{A2}=\widehat{BAC}=90^0\)(2)
(1),(2)\(\Rightarrow\widehat{B}=\widehat{A2}\)
Xét tam giác HBA và tam giác HAC có:
\(\hept{\begin{cases}\widehat{B}=\widehat{A2}\\\widehat{BHA}=\widehat{AHC}=90^0\end{cases}\Rightarrow\Delta HBA~\Delta HAC\left(g.g\right)}\)(4)
\(\Rightarrow\frac{AH}{BH}=\frac{CH}{AH}\)( các đoạn tương ứng tỉ lệ )
\(\Rightarrow AH^2=BH.CH\)(5)
c) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\)(cm)
Từ (3) \(\Rightarrow\frac{AC}{BC}=\frac{AH}{AB}\)( các đoạn tương ứng tỉ lệ )
\(\Rightarrow\frac{8}{10}=\frac{AH}{6}\)
\(\Rightarrow AH=4,8\)(cm)
Từ (4) \(\Rightarrow\frac{HB}{AB}=\frac{HA}{AC}\)
\(\Rightarrow\frac{HB}{6}=\frac{4,8}{8}\)
\(\Rightarrow HB=3,6\)(cm)
Từ (5) \(\Rightarrow HC=6,4\left(cm\right)\)
Hiện tai minh chi moi giai được cau a thoi. a, Áp dung định lý py-ta-go cho tam giác Vuông ABC: AB^2+AC^2=BC^2. 6^2+8^2=BC^2 36+64=100. vay can100=10cm
A B C H D
a/ Làm luôn cho hoàn chỉnh:
Xét tam giác ABC vuông tại A có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(6^2+8^2=BC^2\)
\(36+64=BC^2\)
\(100=BC^2\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
b/ Xét tam giác ABC và tam giác AHB có:
\(\hept{\begin{cases}\widehat{ABC}:chung\\\widehat{BAC}=\widehat{AHB}=90^0\left(gt\right)\end{cases}}\)
=> tam giác ABC ~ tam giác HBA (g.g)
c/ Từ chứng minh câu b
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\Rightarrow AB^2=BC.BH\)
* Tính \(BH\):
Sử dụng chính tỉ số bên trên: \(\frac{AB}{BH}=\frac{BC}{AB}\Leftrightarrow\frac{6}{BH}=\frac{10}{6}\Rightarrow BH=\frac{6.6}{10}=3,6\left(cm\right)\)
* Tính \(HC\):
\(HC=BC-HB=10-3,6=6,4\left(cm\right)\)
d/ Xét tam giác ABD và tam giác ACD có:
\(\hept{\begin{cases}\widehat{BAD}=\widehat{DAC}\left(gt\right)\\\frac{BD}{AB}=\frac{DC}{AC}\left(tinhchatphangiac\right)\end{cases}}\)
=> tam giác ABD ~ tam giác ACD (c.g.c)
Tới đây bí rồi, để nghĩ tiếp
bn tk mk mk tk lại bn nha
BC=10cm
HC=5cm
AH=5cm
GIẢI
áp dụng định lí pi-ta-go vào trong tam giác vuông ABC
ta có : \(BC^2=AB^2+AC^2\)
hay \(BC^2=6^2+8^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10cm\)
ta có : \(HC=BC-BH\)
\(\Rightarrow HC=10-5=5cm\)
áp dụng hệ thức lượng vào trong tam giác vuông ABC
ta có : \(AH^2=BH.HC\)
\(\Rightarrow AH^2=5.5\)
\(\Rightarrow AH^2=25\)
\(\Rightarrow AH=5cm\)
vậy : \(BC=10cm\)
\(HC=5cm\)
\(AH=5cm\)