Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D
Bài làm:
a) Xét 2 tam giác: \(\Delta ABC\)và \(\Delta HBA\)có:
\(\hept{\begin{cases}\widehat{ABC}chung\\\widehat{AHB}=\widehat{BAC}=90^0\end{cases}}\)
=> \(\Delta ABC\)đồng dang với \(\Delta HBA\)(G.G)
b) \(\Delta AHB\)đồng dạng với \(\Delta CAB\)(G.G) vì:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}=90^0\\\widehat{BAH}=\widehat{ACH}=90^0-\widehat{HAC}\end{cases}}\)
=> \(\frac{BH}{AH}=\frac{AH}{HC}\)\(\Leftrightarrow AH^2=BH.HC\)
c) Vì tam giác ABC vuông tại A nên theo định lý Py-ta-go, ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
Theo phần a, \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(G.G)
=> \(\frac{BA}{AH}=\frac{BC}{AC}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}=4.8\left(cm\right)\)
Mà theo phần b, \(AH^2=BH.HC\)\(\Leftrightarrow BH.HC=4.8^2=23.04\Leftrightarrow HC=\frac{23.04}{HB}\)
Thay vào ta có: \(HB+HC=BC\)
\(\Leftrightarrow HB+\frac{23.04}{HB}=10\)
Từ đó ta giải phương trình ẩn HB ra, \(HB=3.6\left(cm\right)\)
=> \(HC=10-3.6=6.4\left(cm\right)\)
d) Đề bạn viết nhầm phải là cho AD là phân giác của tam giác ABC.
Áp dụng tính chất của tia phân giác trong tam giác ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{3}{4}\Leftrightarrow DC=\frac{4}{3}BD\)
Thay vào đó, ta giải phương trình sau:
\(BD+DC=BC\Leftrightarrow BD+\frac{4}{3}BD=10\)
Từ đó ta giải phương trình ẩn BD => \(BD=\frac{30}{7}cm\)
=> Diện tích tam giác ABD là:
\(S\Delta ABD=\frac{AH.BD}{2}=\frac{4.8\times\frac{30}{7}}{2}=\frac{72}{7}\left(cm^2\right)\)
Học tốt!!!!
a: Xét ΔABC vuông tại A và ΔHBA vuôngtại H có
góc B chung
Do đó; ΔABC đồng dạng với ΔHBA
b: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
a. Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{B}\left(chung\right)\)
\(\widehat{BHA}=\widehat{BAC}\left(=90^0\right)\)
Do đó: \(\Delta HBA\infty\Delta ABC\left(g-g\right)\)
b. Vì \(\Delta ABC\) vuông tại A
=> \(AB^2+AC^2=BC^2\)
hay \(6^2+8^2=BC^2\)
=> \(\sqrt{BC}=\sqrt{100}\)
=> BC = 10cm
Vì \(\Delta HBA\infty\Delta ABC\left(cmt\right)\)
=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)
hay \(\dfrac{AH}{8}=\dfrac{6}{10}\)
=> AH = 4,8 cm
Vì \(\Delta ABH\) vuông tại H
=> \(BH^2+AH^2=AB^2\)
hay \(BH^2=6-4,8\)
=> BH = 1,2 cm
c. Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)
\(\widehat{C}\left(chung\right)\)
Do đó: \(\Delta ABC\infty\Delta HAC\left(g-g\right)\)
Mà \(\Delta HBA\infty\Delta ABC\left(cmt\right)\)
=> \(\Delta HAC\infty\Delta HBA\)
=> \(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
hay \(AH^2=HB.HC\)
A B C H 1 2
a) Xét tam giác ABC và tam giác HBA có:
\(\hept{\begin{cases}\widehat{B}chung\\\widehat{BAC}=\widehat{BHA}=90^0\end{cases}\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)}\)(3)
b) Vì tam giác BHA vuông tại H(gt) nên \(\widehat{B}+\widehat{A1}=90^0\)( 2 góc bù nhau ) (1)
Ta có: \(\widehat{A1}+\widehat{A2}=\widehat{BAC}=90^0\)(2)
(1),(2)\(\Rightarrow\widehat{B}=\widehat{A2}\)
Xét tam giác HBA và tam giác HAC có:
\(\hept{\begin{cases}\widehat{B}=\widehat{A2}\\\widehat{BHA}=\widehat{AHC}=90^0\end{cases}\Rightarrow\Delta HBA~\Delta HAC\left(g.g\right)}\)(4)
\(\Rightarrow\frac{AH}{BH}=\frac{CH}{AH}\)( các đoạn tương ứng tỉ lệ )
\(\Rightarrow AH^2=BH.CH\)(5)
c) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\)(cm)
Từ (3) \(\Rightarrow\frac{AC}{BC}=\frac{AH}{AB}\)( các đoạn tương ứng tỉ lệ )
\(\Rightarrow\frac{8}{10}=\frac{AH}{6}\)
\(\Rightarrow AH=4,8\)(cm)
Từ (4) \(\Rightarrow\frac{HB}{AB}=\frac{HA}{AC}\)
\(\Rightarrow\frac{HB}{6}=\frac{4,8}{8}\)
\(\Rightarrow HB=3,6\)(cm)
Từ (5) \(\Rightarrow HC=6,4\left(cm\right)\)
phần d viết lại cậu ơi