K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

Hỏi đáp Toán

a. Xét \(\Delta HBA\)\(\Delta ABC\) có:

\(\widehat{B}\left(chung\right)\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^0\right)\)

Do đó: \(\Delta HBA\infty\Delta ABC\left(g-g\right)\)

b. Vì \(\Delta ABC\) vuông tại A
=> \(AB^2+AC^2=BC^2\)

hay \(6^2+8^2=BC^2\)

=> \(\sqrt{BC}=\sqrt{100}\)

=> BC = 10cm

\(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

hay \(\dfrac{AH}{8}=\dfrac{6}{10}\)

=> AH = 4,8 cm

\(\Delta ABH\) vuông tại H

=> \(BH^2+AH^2=AB^2\)

hay \(BH^2=6-4,8\)

=> BH = 1,2 cm

c. Xét \(\Delta ABC\)\(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)

\(\widehat{C}\left(chung\right)\)

Do đó: \(\Delta ABC\infty\Delta HAC\left(g-g\right)\)

\(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

=> \(\Delta HAC\infty\Delta HBA\)

=> \(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

hay \(AH^2=HB.HC\)

12 tháng 5 2018

a)  Xét  \(\Delta ABC\)và    \(\Delta HBA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BAC}=\widehat{BHA}=90^0\)

suy ra:    \(\Delta ABC~\Delta HBA\)  (g.g)

b)  Xét   \(\Delta AIH\)và     \(\Delta AHB\)có:

        \(\widehat{AIH}=\widehat{AHB}=90^0\)

        \(\widehat{IAH}\)  chung

suy ra:    \(\Delta AIH~\Delta AHB\) (g.g)

\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\)  \(\Rightarrow\)  \(AI.AB=AH^2\)  (1)

Xét    \(\Delta AHK\)và     \(\Delta ACH\)có:

    \(\widehat{HAK}\)chung

   \(\widehat{AKH}=\widehat{AHC}=90^0\)

suy ra:   \(\Delta AHK~\Delta ACH\)  (g.g)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)

\(\Rightarrow\)\(AK.AC=AH^2\)    (2)

Từ (1) và (2) suy ra:    \(AI.AB=AK.AC\)

c)   \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2

Tứ giác  \(HIAK\)có:     \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)

\(\Rightarrow\)\(HIAK\)là hình chữ nhật

\(\Rightarrow\)\(AH=IK=4\)cm

Ta có:   \(AI.AB=AK.AC\) (câu b)

 \(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)

Xét    \(\Delta AIK\)và    \(\Delta ACB\)có:

    \(\widehat{IAK}\)chung

   \(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)

suy ra:   \(\Delta AIK~\Delta ACB\)  (c.g.c)

\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)

\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)

BH=3,6(cm)

c: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

c: ΔACB vuông tại A 

mà AH là đường cao

nên AH^2=HB*HC

d: ΔAHB vuông tại H có HI vuông góc AB

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2=AI*AB

1 tháng 5 2018

A B C H 6 8 K I

a.

Xét tam giác HBA và tam giác ABC có:

góc H = A= 90o

góc B chung

Do đó: tam giác HBA~ABC(g.g)

b.

Ta có tam giác ABC vuông tại A

=> BC2 = AB2 + AC2

=> BC2 = 62 + 82

=> BC = 10 (cm)

Ta có tam giác HBA~ABC

=> \(\dfrac{HA}{AC}=\dfrac{AB}{BC}\Rightarrow HA=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\)

Tam giác ABH vuông tại H

=> AB2 = AH2 + BH2

=> BH2 = AB2 - AH2

=> BH2 = 62 - 4,82

=> BH2 = 3,6 cm

c. Xét tam giác HBA và tam giác HAC có:

góc H = 90o

góc HBA = HAC ( cùng phụ góc C)

Do đó: tam giác HBA~HAC( g.g)

=> \(\dfrac{HA}{HC}=\dfrac{HB}{HA}\Rightarrow AH.AH=HB.HC\)

d.

Ta có:

góc I = K = A = 90o

=> AIHK là hình chữ nhật

=> IH = AK; IA = HK

Ta có tam giác HBA~ABC

=> \(\dfrac{HA}{AC}=\dfrac{AB}{BC}\) hay \(\dfrac{IK}{AC}=\dfrac{AB}{BC}\)

Xét tam giác IBH và tam giác ABC có:

góc I = A = 90o

góc B chung

Do đó: tam giác IBH~ABC (g.g)

=> \(\dfrac{IH}{AC}=\dfrac{BH}{BC}\Rightarrow IH=\dfrac{BH.AC}{BC}=\dfrac{3,6.8}{10}=2,88\)

HC = 10 - HB = 10- 3,6 = 6,4 (cm)

Xét tam giác KHC và tam giác ABC có:

góc K = A = 90o

góc C chung

Do đó: tam giác KHC~ABC (g.g)

=> \(\dfrac{KH}{AB}=\dfrac{HC}{BC}\Rightarrow KH=\dfrac{AB.HC}{BC}=\dfrac{6.6,4}{10}=3,84\) (cm)

Ta có:

\(\dfrac{IH}{KH}=\dfrac{2,88}{3,84}=\dfrac{3}{4};\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow\dfrac{IH}{KH}=\dfrac{AB}{AC}\)

\(\dfrac{IH}{KH}=\dfrac{AK}{AI}\Rightarrow\dfrac{AK}{AI}=\dfrac{AB}{AC}\)

=> AI.AB = AK.AC

1 tháng 5 2018

bạn tự vẽ hình......

a) Xét \(\Delta\)HBA và \(\Delta\)ABC có:

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{B}\) là góc chung

\(\Rightarrow\)\(\Delta\)HBA đồng dạng vs \(\Delta\)ABC

b) Trong \(\Delta\)ABC vuông tại A có:

BC2 = AB2 + AC2

= 62 + 82

= 100

\(\Rightarrow\) BC = 10(cm)

\(\Delta\)HBA đồng dạng vs \(\Delta\)ABC

\(\Rightarrow\) \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

Trong \(\Delta\)HAB vuông góc tại H có:

BH2 = AB2 - AH2 (suy ra từ định lý pytago)

= 62 - 4,82

= 12.96

\(\Rightarrow\) BH = 3,6 (cm)

c) Xét \(\Delta\)HAC và \(\Delta\)ABC có:

\(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{C}\) là góc chung

\(\Rightarrow\) \(\Delta\)HAC đồng dạng vs \(\Delta\)ABC

\(\Delta\)HBA đồng dang vs \(\Delta\)ABC

\(\Rightarrow\) \(\Delta\)HAC đồng dạng vs \(\Delta\)HBA

\(\Rightarrow\) \(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

\(\Rightarrow\) AH2 = HB.HC

d) Vì \(\Delta\)HBA đồng dạng với \(\Delta\)ABC

\(\Rightarrow\widehat{BAH}=\widehat{BCA}\) (2 góc tương ứng)

Hay \(\widehat{HAI}=\widehat{BCA}\)

Vì tứ giác AKHI có:

\(\widehat{A}=\widehat{K}=\widehat{I}\left(=90^o\right)\)

\(\Rightarrow\) AKHI là hình chữ nhật

\(\Rightarrow\) \(\widehat{HAI}=\widehat{KIA}\) (t/chất)

\(\widehat{HAI}=\widehat{BCA}\)

\(\Rightarrow\) \(\widehat{KIA}=\widehat{BCA}\)

Xét \(\Delta\) AKI và \(\Delta\)ABC có:

\(\widehat{A}\) là góc chung

\(\widehat{KIA}=\widehat{BCA}\)

\(\Rightarrow\) \(\Delta\)AKI đồng dạng vs \(\Delta\)ABC

\(\Rightarrow\)\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)

\(\Rightarrow\) AB.AI = AC.AK

12 tháng 5 2016

a) xét tam giác ( k biết ghi kí hiệu trên này :v) ABC và tam giác HBA có 
 góc B chung ( kí hiệu góc nhé :D) 
góc A = góc BHA = 90 độ ( gt) kí hiệu nhé 
Nên tam giác ABC ~ tam giác HBA (g .g) mình ms làm dc câu A thôi :v

 

13 tháng 5 2016

TỰ VẼ HÌNH NHA  

a) xét tám giác ABC và tam giác HBA 

góc A= góc H (=90 độ)

góc A :chung

=> tam giác ABC ~ tam giác HBA (g-g)

 

29 tháng 5 2020

A B C H 1 2

a) Xét tam giác ABC và tam giác HBA có:

\(\hept{\begin{cases}\widehat{B}chung\\\widehat{BAC}=\widehat{BHA}=90^0\end{cases}\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)}\)(3)

b) Vì tam giác BHA  vuông tại H(gt) nên \(\widehat{B}+\widehat{A1}=90^0\)( 2 góc bù nhau ) (1)

Ta có: \(\widehat{A1}+\widehat{A2}=\widehat{BAC}=90^0\)(2)

(1),(2)\(\Rightarrow\widehat{B}=\widehat{A2}\)

Xét tam giác HBA và tam giác HAC có:

\(\hept{\begin{cases}\widehat{B}=\widehat{A2}\\\widehat{BHA}=\widehat{AHC}=90^0\end{cases}\Rightarrow\Delta HBA~\Delta HAC\left(g.g\right)}\)(4)

\(\Rightarrow\frac{AH}{BH}=\frac{CH}{AH}\)( các đoạn tương ứng tỉ lệ )

\(\Rightarrow AH^2=BH.CH\)(5)

c)  Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\)(cm)

Từ (3) \(\Rightarrow\frac{AC}{BC}=\frac{AH}{AB}\)( các đoạn tương ứng tỉ lệ )

\(\Rightarrow\frac{8}{10}=\frac{AH}{6}\)

\(\Rightarrow AH=4,8\)(cm)

Từ (4) \(\Rightarrow\frac{HB}{AB}=\frac{HA}{AC}\)

\(\Rightarrow\frac{HB}{6}=\frac{4,8}{8}\)

\(\Rightarrow HB=3,6\)(cm)

Từ (5) \(\Rightarrow HC=6,4\left(cm\right)\)

29 tháng 5 2020

phần d viết lại cậu ơi