K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. a) Chứng minh ED/AD + BF/BC = 1b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song...
Đọc tiếp

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. 

a) Chứng minh ED/AD + BF/BC = 1

b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.

Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.

a) Chứng minh CF = DK

b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.

Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.

Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.

Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.

7
17 tháng 3 2020

Bài 6 :

Tự vẽ hình nhá :)

a) Gọi O là giao điểm của AC và EF

Xét tam giác ADC có :

EO // DC => AE/AD = AO/AC (1)

Xét tam giác ABC có :

OF // DC

=> CF/CB = CO/CA (2)

Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm

Bài 7 :

A B C D G K M F E

a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)

Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG

Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM 

=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)

Từ (1) và (2) => CF / EF = DK / AD

Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È

=> CF = DK ( đpcm )

Bài 8 : 

A B C M N 38 11 8

Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )

Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :

AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38

=> 1140 = 19.AN + 722

=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )

=> NC = 38 - 12 = 26 ( cm )

4 tháng 2 2020

chắc sang năm mới làm xong mất 

12 tháng 7 2017

bn tự vẽ hình đc ko?

Gọi M là trung điểm BC thì A, G, M thẳng hàng và AG = 2GM

Từ B và C vẽ 2 đường thẳng song song với EF cắt AM lần lượt tại D và N.

Ta có  \(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}\)

Ta cần c/m DG + NG = AG

Dễ dàng c/m đc  \(\Delta BDM=\Delta CNM\)  (g-c-g)

=> DM = MN

Ta có DG + NG = DG + DG + DM + MN = (DG + DM) + (DG + MN) = 2(DG + DM) = 2GM = AG

Do đó  \(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}=\frac{DG+NG}{AG}=\frac{AG}{AG}=1\)

22 tháng 11 2023

loading...  loading...  

28 tháng 3 2020

Gọi M là trung điểm BC

EF cắt BC tại I,khôg mất tíh tổg quát giả sử I nằm trên tia đối tia CB

áp dụg Menelauyt cho 3 điểm thẳg hàg E, G, I thuộc các đ thẳg chứa 3 cạh t/g ABM

\(\frac{EB}{EA}\times\frac{GA}{GM}\times\frac{IM}{IB}=1\)

\(\frac{EB}{EA}=\frac{1}{2}\times\frac{IB}{IM}\)

áp dụg Menelauyt cho 3 điểm thẳg hàg F, G, I thuộc các đ thẳg chứa 3 cạh t/g ACM

\(\frac{FC}{FA}\times\frac{GA}{GM}\times\frac{IM}{IC}=1\)

=>\(\frac{FC}{FA}=\frac{1}{2}\times\frac{IC}{IM}\)

(1)\(\frac{EB}{EA}+\frac{FC}{FA}=\frac{1}{2}\times\frac{\left(IB+IC\right)}{IM}\)

IB =IM +MB =IM +MC (2)

IC =IM -MC (3)

Thay 3) vào (1) ta được

\(\frac{EB}{EA}+\frac{FC}{FA}=\frac{1}{2}\times2=\frac{IM}{IM}=1\)

BN tự kẻ hình nha!!