Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DF//AB\(\Rightarrow\frac{AF}{AC}=\frac{BD}{BC}\)
Lại có DE//AC\(\Rightarrow\frac{BD}{BC}=\frac{BE}{AB}\)
Vậy \(\frac{AE}{AB}+\frac{AF}{AC}=\frac{AE}{AB}+\frac{EB}{AB}=\frac{AB}{AB}=1\)
Gia sử AB < AC
Kẻ BM,CN // DE , trung tuyến AF
Tam giác BMF = tam giác CNF ( g.c.g)
=> MF = NF
=> AB/AD = AM/AG ; AC/AE = AN/AG
=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )
=> ĐPCM
Tk mk nha
bn tự vẽ hình đc ko?
Gọi M là trung điểm BC thì A, G, M thẳng hàng và AG = 2GM
Từ B và C vẽ 2 đường thẳng song song với EF cắt AM lần lượt tại D và N.
Ta có \(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}\)
Ta cần c/m DG + NG = AG
Dễ dàng c/m đc \(\Delta BDM=\Delta CNM\) (g-c-g)
=> DM = MN
Ta có DG + NG = DG + DG + DM + MN = (DG + DM) + (DG + MN) = 2(DG + DM) = 2GM = AG
Do đó \(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}=\frac{DG+NG}{AG}=\frac{AG}{AG}=1\)