\(\Delta\)ABC. Qua trọng tâm G, kẻ d cắt AB,AC theo thứ tự tại E,F . CMR: 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

bn tự vẽ hình đc ko?

Gọi M là trung điểm BC thì A, G, M thẳng hàng và AG = 2GM

Từ B và C vẽ 2 đường thẳng song song với EF cắt AM lần lượt tại D và N.

Ta có  \(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}\)

Ta cần c/m DG + NG = AG

Dễ dàng c/m đc  \(\Delta BDM=\Delta CNM\)  (g-c-g)

=> DM = MN

Ta có DG + NG = DG + DG + DM + MN = (DG + DM) + (DG + MN) = 2(DG + DM) = 2GM = AG

Do đó  \(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}=\frac{DG+NG}{AG}=\frac{AG}{AG}=1\)

3 tháng 3 2020

A B C D E F

Thấy đề sai sai á :)) Hóng cách làm  vậy ....

10 tháng 2 2020

B A C F D E

10 tháng 2 2020

DF//AB\(\Rightarrow\frac{AF}{AC}=\frac{BD}{BC}\)

Lại có DE//AC\(\Rightarrow\frac{BD}{BC}=\frac{BE}{AB}\)

Vậy \(\frac{AE}{AB}+\frac{AF}{AC}=\frac{AE}{AB}+\frac{EB}{AB}=\frac{AB}{AB}=1\)

9 tháng 2 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

21 tháng 12 2024

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha