Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_n=\dfrac{1}{n+1}\Rightarrow u_{n+1}=\dfrac{1}{n+2}\)
\(\Rightarrow u_n-u_{n+1}=\dfrac{1}{n+1}-\dfrac{1}{n+2}=\dfrac{1}{\left(n+1\right)\left(n+2\right)}>0\)
\(\Rightarrow u_{n+1}< u_n\Rightarrow\) dãy giảm
Do \(\dfrac{1}{n+1}>0\Rightarrow\) dãy bị chặn dưới bởi 0
\(u_n-1=\dfrac{1}{n+1}-1=-\dfrac{n}{n+1}< 0\Rightarrow u_n< 1\)
\(\Rightarrow\) Dãy bị chặn trên bởi 1
\(\Rightarrow\) Dãy bị chặn
Chọn A.
Trước hết ta chứng minh 1 < un < 4
Điều này hiển nhiên đúng với n = 1.
Giả sử 1 < un < 4, ta có:
Ta chứng minh (un) là dãy tăng
Ta có u1 < u2, giả sử un-1 < un, ∀ n ≤ k.
Khi đó:
Vậy dãy (un) là dãy tăng và bị chặn.
Chọn B.
Trước hết bằng quy nạp ta chứng minh: (un) 1 < un ≤ 2, ∀ n
Điều này đúng với n = 2, giả sử 1 < un < 2 ta có: nên ta có đpcm.
Mà .
Vậy dãy (un) là dãy giảm và bị chặn.
+ Xét tính tăng giảm.
Với mọi n ∈ N ta có:
⇒ un + 1 < un với mọi n ∈ N.
⇒ (un) là dãy số giảm.
+ Xét tính bị chặn.
un > 0 với mọi n.
⇒ (un) bị chặn dưới.
un ≤ u1 = √2 - 1 với mọi n
⇒ (un) bị chặn trên.
⇒ (un) bị chặn.
Chọn C.
Ta có: un+1 – un = (n + 1)3 + 2(n + 1) – n3 – 2n = 3n2 + 3n + 3
Mặt khác: un > 1 và khi n càng lớn thì un càng lớn.
Vậy dãy (un) là dãy tăng và bị chặn dưới.
Chọn B.
Ta có:
⇒ un+1 > un ∀ n ≥ 1 ⇒ dãy (un) là dãy số tăng.
un > = n + 1 ≥ 2 ⇒ dãy (un) bị chặn dưới.
Suy ra: Với n chẵn ⇒ n – 1 lẻ ⇒ (-1)n – 1 = -1 ⇒ un < 0
Với n lẻ ⇒ n – 1 chẵn ⇒ (-1)n – 1 = 1 ⇒ un > 0.
⇒ u1 > u2 < u3 > u4 < u5 > u6 …
⇒ (un) không tăng không giảm.
+ Xét tính bị chặn :
Với ∀ n ∈ N:
⇒ -1 ≤ un ≤ 1.
Vậy (un) bị chặn.
\(u_n=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}< 1\)
=>Hàm số bị chặn trên tại \(u_n=1\)
\(n+1>=1\)
=>\(\dfrac{1}{n+1}< =1\)
=>\(-\dfrac{1}{n+1}>=-1\)
=>\(1-\dfrac{1}{n+1}>=-1+1=0\)
=>Hàm số bị chặn dưới tại 0
\(u_n=1-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)
\(\dfrac{u_n}{u_{n+1}}=\dfrac{n}{n+1}:\dfrac{n+1}{n+2}=\dfrac{n^2+2n}{n^2+2n+1}< 1\)
=>(un) là dãy số tăng