Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ta có hình vẽ sau:
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)
a: Xét ΔACE vuông tại C và ΔADE vuông tại D có
AE chung
AC=AD
Do đó: ΔACE=ΔADE
Suy ra: \(\widehat{CAE}=\widehat{DAE}\)
hay AE là tia phân giác của \(\widehat{CAB}\)
b: Ta có: ΔACE=ΔADE
nên EC=ED
Ta có: AC=AD
nên A nằm trên đường trung trực của CD(1)
Ta có: EC=ED
nên E nằm trên đường trung trực của CD(2)
Từ (1) và (2) suy ra AE là đường trung trực của CD
a: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên I là trung điểm của BC và AI\(\perp\)BC
Xét ΔMBC có
MI là đường cao
MI là đường trung tuyến
Do đó: ΔMBC cân tại M
b: Ta có: AI\(\perp\)BC
I là trung điểm của BC
Do đó: AI là đường trung trực của BC
c: Ta có: DH\(\perp\)BC
AI\(\perp\)BC
Do đó: DH//AI
=>\(\widehat{BDH}=\widehat{BAI}\)(hai góc đồng vị)
mà \(\widehat{BAC}=2\cdot\widehat{BAI}\)(AI là phân giác của góc BAC)
nên \(\widehat{BAC}=2\cdot\widehat{BDH}\)
a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.
Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)
=>md=ne.
b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)
xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)
=>di=ie=>i là trung điểm de
c)gọi h là giao của ao với bc.
ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc
a: ΔABC vuông tại C
=>\(\widehat{CBA}+\widehat{CAB}=90^0\)
=>\(\widehat{CAB}=90^0-35^0=55^0\)
Xét ΔCBA có \(\widehat{CBA}< \widehat{CAB}< \widehat{ACB}\)
mà CA,CB,AB lần lượt là cạnh đối diện của các góc CBA,CAB,ACB
nên CA<CB<AB
b: Xét ΔACM và ΔANM có
AC=AN
\(\widehat{CAM}=\widehat{NAM}\)
AM chung
Do đó: ΔACM=ΔANM
=>\(\widehat{ACM}=\widehat{ANM}\)
=>\(\widehat{ANM}=90^0\)
=>ΔANM vuông tại N
c: ΔACM=ΔANM
=>MC=MN
=>M nằm trên đường trung trực của CN(1)
Ta có: AN=AC
=>A nằm trên đường trung trực của CN(2)
Từ (1),(2) suy ra AM là đường trung trực của CN