Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) trong tam giac ABC vuong tai A co
+)BC2=AB2+AC2
suy ra AC=12cm
+)AH.BC=AB.AC
suy ra AH=7,2cm
b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm
suy ra MN=7,2cm
c) goi O la giao diem cu MN va AH
Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm
suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB
Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC
suy ra tam giac AKB can tai K
suy ra goc B= goc BAK
Ta co goc B+ goc BAH=90 do
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
a)Áp dụng hệ thức lượng trong tam giác vuông có:
\(AB^2=BH.BC\Leftrightarrow BC=\dfrac{AB^2}{BH}=5\)(cm)
\(HC=BC-HB=5-1,8=3,2\)(cm)
\(HA^2=HB.HC\Leftrightarrow HA=\sqrt{HB.HC}=\sqrt{1,8.3,2}=2,4\)(cm)
\(AC^2=HC.BC\Leftrightarrow AC=\sqrt{HC.BC}=\sqrt{3,2.5}=4\) (cm)
Vậy...
b) Dễ cm được AIMK là hcn (vì tứ giác có 3 góc vuông)
\(\Rightarrow AM=IK\)
Do AM là đường trung tuyến trong tam giác vuông ABC
\(\Rightarrow AM=\dfrac{BC}{2}=2,5\) (cm)
Vậy IK=2,5cm
a)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=3^2-1.8^2=5.76\)
hay AH=2,4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow AC^2=2.4^2+3.2^2=16\)
hay AC=4(cm)
a: AC=căn 5^2-3^2=4cm
AH=3*4/5=2,4cm
BH=3^2/5=1,8cm
CH=5-1,8=3,2cm
b: \(BH=\sqrt{60^2:144}=5\left(cm\right)\)
BC=144+5=149cm
\(AB=\sqrt{5\cdot149}=\sqrt{745}\left(cm\right)\)
\(AC=\sqrt{144\cdot149}=12\sqrt{149}\left(cm\right)\)
c: \(HC=\sqrt{AC^2-AH^2}=\dfrac{144}{13}\left(cm\right)\)
\(BH=\dfrac{AH^2}{HC}=\dfrac{25}{13}cm\)
BC=BH+CH=13(cm)
AB=căn 13^2-12^2=5cm
a
Áo dụng đl pytago vào tam giác ABC vuông tại A:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Theo hệ thức lượng vào tam giác ABC vuông tại A có đường cao AH:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\left(cm\right)\)
\(CH=BC-BH=5-1,8=3,2\left(cm\right)\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{3.4}{5}=2,4\left(cm\right)\)
b
Áp dụng đl pytago vào tam giác AHC vuông tại H có:
\(AC=\sqrt{AH^2+HC^2}=\sqrt{60^2+144^2}=156\left(cm\right)\)
Theo hệ thức lượng vào tam giác ABC vuông tại A, đường cao AH có:
\(AC^2=HC.BC\Rightarrow BC=\dfrac{AC^2}{HC}=\dfrac{156^2}{144}=169\left(cm\right)\)
\(BH=BC-HC=169-144=25\left(cm\right)\)
\(AB^2=BH.BC\Rightarrow AB=\sqrt{25.169}=65\left(cm\right)\)
c
Áp dụng đl pytago vào tam giác AHC vuông tại H:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{12^2-\left(\dfrac{60}{13}\right)^2}=\dfrac{144}{13}\approx11,08\left(cm\right)\)
Theo hệ thức lượng vào tam giác ABC đường cao AH có:
\(AH^2=HB.HC\Rightarrow HB=\dfrac{AH^2}{HC}=\dfrac{\left(\dfrac{60}{13}\right)^2}{\dfrac{144}{13}}=\dfrac{25}{13}\approx1,92\left(cm\right)\)
\(BC=HB+HC=\dfrac{25}{13}+\dfrac{144}{13}=13\left(cm\right)\)
\(AB^2=HB.BC\Rightarrow AB=\sqrt{HB.HC}=\sqrt{\dfrac{144}{13}.\dfrac{25}{13}}=\dfrac{60}{13}\approx4,62\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC;AB^2=BH\cdot BC;AC^2=CH\cdot CB\)
=>\(AH=\sqrt{9\cdot25}=15\left(cm\right);AB=\sqrt{9\cdot34}=3\sqrt{34}\left(cm\right);AC=\sqrt{25\cdot34}=5\sqrt{34}\left(cm\right)\)
b: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
ΔHAB vuông tại H có HE là đường cao
nên AE*AB=AH^2
=>AE*3căn 34=15^2
=>\(AE=\dfrac{75}{\sqrt{34}}\left(cm\right)\)
ΔHAC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>\(AF=\dfrac{15^2}{5\sqrt{34}}=\dfrac{45}{\sqrt{34}}\left(cm\right)\)
\(S_{AEHF}=AE\cdot AF=\dfrac{45\cdot75}{34}=\dfrac{3375}{34}\left(cm^2\right)\)
c: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
a: \(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{\dfrac{2}{3}AC}{\sqrt{\left(\dfrac{2}{3}AC\right)^2+AC^2}}=\dfrac{2\sqrt{13}}{13}AC\)
\(\tan\widehat{ACB}=\dfrac{AB}{AC}=\dfrac{\dfrac{2}{3}AC}{AC}=\dfrac{2}{3}\)