Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét Δ BMM và Δ AMC có
BM = MC ( do M là trung điểm của BC )
AM = AM' ( do M là trung điểm của AM' )
góc BMM' = góc AMC ( là hai góc đối đỉnh )
=> Δ BMM = Δ AMC ( trg hợp c-g-c )
=> góc M'BM = góc MCA ( hai góc tương ứng )
mà hai góc này nằm ở vị trí so le trong
=> BM' // AC
a. Vì M là trung điểm của BC => BM = MC = \(\dfrac{BC}{2}\) (1)
Vì M' là trung điểm của B'C' => B'M' = M'C' = \(\dfrac{B'C'}{2}\) (2)
Mà BC = B'C' => \(\dfrac{BC}{2}\) = \(\dfrac{B'C'}{2}\) (3)
Từ (1) ,(2) và (3) => BM = MC = B'M' = M'C'
Xét \(\Delta AMB\) và \(\Delta A'M'B'\) có :
AM = A'M' (Gt)
AB = A'B' (2 cạnh tương ứng của \(\Delta ABC\) = \(\Delta A'B'C'\))
BM = B'M'
=> \(\Delta AMB\) = \(\Delta A'M'B'\) (c.c.c)
b. Xét \(\Delta AMC\) và \(\Delta A'M'C'\) có :
AM = A'M' (Gt)
AC = A'C' (2 cạnh tương ứng của \(\Delta ABC\) = \(\Delta A'B'C'\))
CM = C'M'
=> \(\Delta AMB\) = \(\Delta A'M'C'\) (c.c.c)
=> \(\widehat{AMC}=\widehat{A'M'C'}\) (2 góc tương ứng)
1: Xét ΔABC và ΔA'B'C' có
AB=A'B'
\(\widehat{BAC}=\widehat{B'A'C'}\)
AC=A'C'
Do đó: ΔABC=ΔA'B'C'
Suy ra: BC=B'C'
2: Ta có: BC=B'C'
mà BM=BC/2
và B'M'=B'C'/2
nên BM=B'M'
3: Xét ΔABM và ΔA'B'M' có
AB=A'B'
\(\widehat{B}=\widehat{B'}\)
BM=B'M'
Do đó:ΔABM=ΔA'B'M'
Suy ra: AM=A'M'
Ta có : \(\left\{{}\begin{matrix}BC=BM+MC\\B'C'=B'M'+M'C'\end{matrix}\right.\)
Mà theo giả thiết ta xét \(\Delta ABC;\Delta A'B'C'\) có :
\(\left\{{}\begin{matrix}AB=A'B'\\AC=A'C'\\AM=A'M'\end{matrix}\right.\)
=> \(BC=B'C'\)
=> \(\Delta ABC=\Delta A'B'C'\left(c.c.c\right)\)
\(Taco:\)
\(\left\{{}\begin{matrix}BM=MC\left(gt\right)\\B'M'=M'C'\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow BM=MC=B'M'=M'C'\)
\(Taco:\)
\(\left\{{}\begin{matrix}BM+MC=BC\\B'M'+M'C'=B'C'\end{matrix}\right.\)
\(MaBM=MC=B'M'=M'C'\left(cmt\right)\)
\(\Rightarrow BC=B'C'\)
\(Xet\Delta ABCva\Delta A'B'C',taco:\)
\(\left\{{}\begin{matrix}AB=AB'\left(gt\right)\\BC=B'C'\left(cmt\right)\\AC=A'C'\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABC=\Delta A'B'C'\left(c-c-c\right)\)
Ta có hình vẽ:
a/ Xét tam giác ABC và tam giác A'B'C' có:
AB = A'B' (GT)
góc A = góc A' (GT)
AC = A'C' (GT)
=> tam giác ABC = tam giác A'B'C'.
b/ Ta có: tam giác ABC = tam giác A'B'C' (cmt)
=> BC = B'C'.
Mà M và M' lần lượt là trung điểm của BC và B'C'
=> CM = C'M'.
c/ Ta có: tam giác ABC = tam giác A'B'C'
Mà AM và A'M' lần lượt là trung tuyến của hai tam giác ABC và A'B'C'
=> AM = A'M'.
a, Xét \(\Delta\)ABC và \(\Delta\)A'B'C', có
\(\Delta\)ABC = \(\Delta\)A'B'C' (gt)
-> AB = A'B'
AC = A'C'
BC = B'C'
=> \(\Delta\)ABC = \(\Delta\)A'B'C' (c.c.c)
=> AH = A'H' (2 cạnh tương ứng)
Chúc bạn học tốt
ta có BM=\(\frac{1}{3}\)BC
\(\Rightarrow\)MC=\(\frac{2}{3}\)BC
mà BC=B'C'\(\Rightarrow\)MC=M'C'
Xét 2 tam giác ACM và tam giác A'C'M'
có AC=A'C'(tam giác ABC=tam giác A'B'C')
MC=M'C'
\(\widehat{C}\)=\(\widehat{C'}\)(tam giác ABC=tam giác A'B'C')
\(\Rightarrow\)Tam giác ACM =tam giác A'C'M' (cạnh . góc . cạnh)
\(\Rightarrow\)AM=A'M'(cặp cạnh tương ứng)
Lời giải:
Trên tia đối tia $MA$ lấy $D$ sao cho $MD=MA$
Dễ cm $\triangle BMA=\triangle CMD$ (c.g.c)
$\Rightarrow \widehat{MBA}=\widehat{MCD}$
Mà 2 góc này so le trong nên $BA\parallel CD$
$\Rightarrow CD\perp AC$ hay $\widehat{DCA}=90^0$
Cùng từ 2 tam giác bằng nhau trên suy ra $BA=CD$
Xét tam giác $BAC$ và $DCA$ có:
$BA=DC$
$\widehat{BAC}+\widehat{DCA}=90^0$
$AC$ chung
$\Rightarrow BC=DA$
Mà $DA=2AM$ nên $BC=2AM$
\(\Delta ABC=\Delta A'B'C'\\ \Rightarrow BC=B'C'\\ \Rightarrow\dfrac{BC}{2}=\dfrac{B'C'}{2}\\ \Rightarrow AM=A'M'\)