K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Vì M là trung điểm của BC => BM = MC = \(\dfrac{BC}{2}\) (1)

Vì M' là trung điểm của B'C' => B'M' = M'C' = \(\dfrac{B'C'}{2}\) (2)

Mà BC = B'C' => \(\dfrac{BC}{2}\) = \(\dfrac{B'C'}{2}\) (3)

Từ (1) ,(2) và (3) => BM = MC = B'M' = M'C'

Xét \(\Delta AMB\)\(\Delta A'M'B'\) có :

AM = A'M' (Gt)

AB = A'B' (2 cạnh tương ứng của \(\Delta ABC\) = \(\Delta A'B'C'\))

BM = B'M'

=> \(\Delta AMB\) = \(\Delta A'M'B'\) (c.c.c)

b. Xét \(\Delta AMC\)\(\Delta A'M'C'\) có :

AM = A'M' (Gt)

AC = A'C' (2 cạnh tương ứng của \(\Delta ABC\) = \(\Delta A'B'C'\))

CM = C'M'

=> \(\Delta AMB\) = \(\Delta A'M'C'\) (c.c.c)

=> \(\widehat{AMC}=\widehat{A'M'C'}\) (2 góc tương ứng)

28 tháng 12 2017

\(\Delta ABC=\Delta A'B'C'\\ \Rightarrow BC=B'C'\\ \Rightarrow\dfrac{BC}{2}=\dfrac{B'C'}{2}\\ \Rightarrow AM=A'M'\)

28 tháng 11 2022

a: Xét ΔAMB và ΔA'M'B' có

AM=A'M'

MB=M'B'

AB=A'B'

DO đó: ΔAMB=ΔA'M'B'

b: Xét ΔAMC và ΔA'M'C' có

AM=A'M'

MC=M'C'

AC=A'C'

Do đó: ΔAMC=ΔA'M'C'

=>góc AMC=góc A'M'C

1: Xét ΔABC và ΔA'B'C' có 

AB=A'B'

\(\widehat{BAC}=\widehat{B'A'C'}\)

AC=A'C'

Do đó: ΔABC=ΔA'B'C'

Suy ra: BC=B'C'

2: Ta có: BC=B'C'

mà BM=BC/2

và B'M'=B'C'/2

nên BM=B'M'

3: Xét ΔABM và ΔA'B'M' có

AB=A'B'

\(\widehat{B}=\widehat{B'}\)

BM=B'M'

Do đó:ΔABM=ΔA'B'M'

Suy ra: AM=A'M'

13 tháng 7 2017

Ta có hình vẽ:

A B C A' B' C' M M'

a/ Xét tam giác ABC và tam giác A'B'C' có:

AB = A'B' (GT)

góc A = góc A' (GT)

AC = A'C' (GT)

=> tam giác ABC = tam giác A'B'C'.

b/ Ta có: tam giác ABC = tam giác A'B'C' (cmt)

=> BC = B'C'.

Mà M và M' lần lượt là trung điểm của BC và B'C'

=> CM = C'M'.

c/ Ta có: tam giác ABC = tam giác A'B'C'

Mà AM và A'M' lần lượt là trung tuyến của hai tam giác ABC và A'B'C'

=> AM = A'M'.

17 tháng 1 2018

A B C A' B' C' M M'

Ta có : \(\left\{{}\begin{matrix}BC=BM+MC\\B'C'=B'M'+M'C'\end{matrix}\right.\)

Mà theo giả thiết ta xét \(\Delta ABC;\Delta A'B'C'\) có :

\(\left\{{}\begin{matrix}AB=A'B'\\AC=A'C'\\AM=A'M'\end{matrix}\right.\)

=> \(BC=B'C'\)

=> \(\Delta ABC=\Delta A'B'C'\left(c.c.c\right)\)

17 tháng 1 2018

A B C A' B' C' M M'

\(Taco:\)

\(\left\{{}\begin{matrix}BM=MC\left(gt\right)\\B'M'=M'C'\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow BM=MC=B'M'=M'C'\)

\(Taco:\)

\(\left\{{}\begin{matrix}BM+MC=BC\\B'M'+M'C'=B'C'\end{matrix}\right.\)

\(MaBM=MC=B'M'=M'C'\left(cmt\right)\)

\(\Rightarrow BC=B'C'\)

\(Xet\Delta ABCva\Delta A'B'C',taco:\)

\(\left\{{}\begin{matrix}AB=AB'\left(gt\right)\\BC=B'C'\left(cmt\right)\\AC=A'C'\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC=\Delta A'B'C'\left(c-c-c\right)\)

1 tháng 4 2019

Vì BC=B'C' nên BM=MC=B'M'=M'C'.

\(\Rightarrow\Delta ABM=\Delta A'B'M'\left(ccc\right);\Delta AMC=\Delta A'M'C'\left(ccc\right)\)

\(\Rightarrow\Delta ABC=\Delta A'B'C'.\)

18 tháng 11 2018

A B C B' M M' C' Xét Δ BMM và Δ AMC có

BM = MC ( do M là trung điểm của BC )

AM = AM' ( do M là trung điểm của AM' )

góc BMM' = góc AMC ( là hai góc đối đỉnh )

=> Δ BMM = Δ AMC ( trg hợp c-g-c )

=> góc M'BM = góc MCA ( hai góc tương ứng )

mà hai góc này nằm ở vị trí so le trong

=> BM' // AC

26 tháng 10 2019

a) Xét 2 \(\Delta\) \(ABC\)\(A'B'C'\) có:

\(AB=A'B'\left(gt\right)\)

\(\widehat{A}=\widehat{A'}\left(gt\right)\)

\(AC=A'C'\left(gt\right)\)

=> \(\Delta ABC=\Delta A'B'C'\left(c-g-c\right).\)

b) Xét 2 \(\Delta\) \(AMC\)\(A'M'C'\) có:

\(AM=A'M'\left(gt\right)\)

\(\widehat{A}=\widehat{A'}\left(gt\right)\)

\(AC=A'C'\left(gt\right)\)

=> \(\Delta AMC=\Delta A'M'C'\left(c-g-c\right).\)

=> \(\widehat{AMC}=\widehat{A'M'C'}\) (2 góc tương ứng)

c) Ta có:

\(\left\{{}\begin{matrix}A'M'+B'M'=A'B'\\AM+BM=AB\end{matrix}\right.\)

\(AM=A'M'\left(gt\right),AB=A'B'\left(gt\right)\)

=> \(BM=B'M'.\)

d) Vì \(\Delta ABC=\Delta A'B'C'\left(cmt\right)\)

=> \(\widehat{B}=\widehat{B'}\) (2 góc tương ứng)

Xét 2 \(\Delta\) \(MBE\)\(M'B'E'\) có:

\(MB=M'B'\left(cmt\right)\)

\(\widehat{B}=\widehat{B'}\left(cmt\right)\)

\(BE=B'E'\left(gt\right)\)

=> \(\Delta MBE=\Delta M'B'E'\left(c-g-c\right).\)

=> \(ME=M'E'\) (2 cạnh tương ứng) (đpcm).

Chúc bạn học tốt!