K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha

8 tháng 1 2019

Ôn tập cuối năm phần số học

Bạn ghi lại đề đi bạn

16 tháng 1

 

Xét 2 tam giác AMG và ABH ta có:

\(\widehat{BAH}\) chung 

\(\widehat{AMG}=\widehat{ABH}\) (cặp góc đồng vị do BH//MG) 

\(\Rightarrow\Delta AMG\sim\Delta ABH\left(g.g\right)\) 

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AH}{AG}\) (1) 

Xét 2 tam giác ANG và ACK có:

\(\widehat{CAK}\) chung 

\(\widehat{ANG}=\widehat{ACK}\) (cặp góc đồng vị do CK//GN) 

\(\Rightarrow\Delta ANG\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{AN}=\dfrac{AK}{AG}\) (2) 

Xét hai tam giác BOH và COK ta có: 

\(\widehat{BOH}=\widehat{COK}\) (đối đỉnh) 

\(BO=CO\) (AO là đường trung tuyến nên O là trung điểm của BC) 

\(\widehat{HBO}=\widehat{KCO}\) (so le trong vì BH//MN và CK//MN ⇒ BH//CK) 

\(\Rightarrow\Delta BOH=\Delta COK\left(g.c.g\right)\) 

\(\Rightarrow HO=OK\) (hai cạnh t.ứng) 

\(\Rightarrow HK=2HO\)

Ta lấy (1) + (2) \(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH+AK}{AG}=\dfrac{AH+AH+HK}{AG}=\dfrac{2AH+HK}{AG}\) 

\(=\dfrac{2AH+2HO}{AG}=\dfrac{2\left(AH+HO\right)}{AG}=\dfrac{2AO}{AG}\) 

Mà G là trọng tâm của tam giác ABC \(\Rightarrow AO=\dfrac{3}{2}AG\) 

\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{2\cdot\dfrac{3}{2}AG}{AG}=2\cdot\dfrac{3}{2}=3\left(đpcm\right)\)  

1, Qua trọng tâm G của tam giác ABC, kẻ đường thẳng song song với AC, cắt AB và BC lần lượt ở D và E. Tính độ dài đoạn DE, biết AD + EC = 16cm, chu vi tam giác ABC = 75cm. 2, Cho hình thang ABCD(AB//CD). Đường thẳng song song hai đáy cắt cạnh AD tại M, cắt cạnh BC tại N sao cho MD = 3 MA. a, Tính tỉ số \(\dfrac{NB}{NC}\) b, Cho AB = 8cm, CD = 20cm. Tính MN. 3, Cho tam giác ABC> Trên các cạnh AB, AC lần lượt lấy các điểm B',...
Đọc tiếp

1, Qua trọng tâm G của tam giác ABC, kẻ đường thẳng song song với AC, cắt AB và BC lần lượt ở D và E. Tính độ dài đoạn DE, biết AD + EC = 16cm, chu vi tam giác ABC = 75cm.

2, Cho hình thang ABCD(AB//CD). Đường thẳng song song hai đáy cắt cạnh AD tại M, cắt cạnh BC tại N sao cho MD = 3 MA.

a, Tính tỉ số \(\dfrac{NB}{NC}\)

b, Cho AB = 8cm, CD = 20cm. Tính MN.

3, Cho tam giác ABC> Trên các cạnh AB, AC lần lượt lấy các điểm B', C' sao cho \(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}.\) Qua B' vẽ đường thẳng a song song với Bc, cắt cạnh AC tại C''.

a, So sánh độ dài các đoạn thẳng AC' và AC''.

b, Chứng minh B'C' // BC.

4, Cho tam gác ABC. Gọi D là điểm chia cạnh AB thàng hai đoạn thẳng có độ dài AD = 13,5cm; DB = 4,5cm. Tính tỉ số các khoảng cách từ các điểm D và B đến cạnh AC.

MỘI NGƯỜI KẺ HÌNH GIÚP MK LUÔN NHÁ !!!

MƠN ẠK

0