K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

Ta có hình vẽ sau:

B D C 1 2 A

a) Xét ΔABD và ΔACD có:

AD : Cạnh chung

\(\widehat{A_1}\) = \(\widehat{A_2}\) (gt)

AB = AC (gt)

=> ΔABD = ΔACD (c.g.c)

=> \(\widehat{B}\) = \(\widehat{C}\) (2 góc tương ứng) (đpcm)

b) Vì ΔABD = ΔACD (ý a)

=> \(\widehat{BDA}=\widehat{CDA}\) (2 góc tương ứng)

\(\widehat{BDA}+\widehat{CDA}=180^o\) (kề bù)

=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}=90^o\) (*)

Từ (*) => AD \(\perp\) BC (đpcm)

c) Vì ΔABD = ΔACD (ý a)

=> BD = CD (2 cạnh tương ứng)

=> D là trung điểm của BC

mà AD \(\perp\) BC

=> AD là đường trung trực của BC (đpcm)

 

 

 

27 tháng 11 2016

Bạn tự vẽ hình nha

a) xét ΔABD và ΔACD có :

góc BAD = CAD ( GT)

AD : cạnh chung

AB= AC ( GT)

-> ΔBAD = Δ CAD( c.g.c)

--> góc B= C ( cặp góc tương ứng)

b) Ta có góc ADB= ADC ( ΔBAD = ΔCAD )

Mà ADB + ADC = 180' ( bù nhau)

--> ADB= ADC = 180' :2 = 90'

--> AD vuông góc với BC

c) Ta có BD= DC (ΔBAD = ΔCAD )

Mà Ad vuông góc vơí BC

--> AD là đường trung trực của BC

16 tháng 12 2021

b: Ta có: ΔBAC cân tại A

mà AM là đường cao

nên M là trung điểm của BC

4 tháng 3 2021

Tự vẽ hình nha:v

a) Xét \(\Delta AED\) và \(\Delta AFD:\)

AD: cạnh chung

\(\widehat{EAD}=\widehat{FAD}\) (AD là tia phân giác góc A)

\(\widehat{AED}=\widehat{AFD}=90^o\)

=> \(\Delta AED=\Delta AFD\left(ch.gn\right)\)

=> DE=DF (2 cạnh t/ứ)

b) Vì tam giác ABC có AB=AC => Tam giác ABC cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

Xét ∆BED và ∆CFD:

DE=DF(cm câu a)

\(\widehat{BED}=\widehat{CFD}=90^o\)

\(\widehat{EBD}=\widehat{FCD}\left(cmt\right)\)

=> ∆BED=∆CFD(cgv.gn)

c. Trong tam giác cân, đường phân giác đồng thời là đường cao

=> AD vuông góc với BC

Mà BD=DC(∆BED=∆CFD) 

=> AD là trung trực của BC

a) Xét ΔABD và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: BD=CD(hai cạnh tương ứng)

Xét ΔEDB vuông tại E và ΔFDC vuông tại F có 

DB=DC(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔEDB=ΔFDC(cạnh huyền-góc nhọn)

Suy ra: DE=DF(hai cạnh tương ứng)

16 tháng 12 2021

b: Ta có: ΔABC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

mà tia AD nằm giữa hai tia AB và AC

nên AD là phân giác của \(\widehat{BAC}\)

b: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{ABM}=\widehat{ACM}\)

mà \(\widehat{ACM}=90^0\)

nên \(\widehat{ABM}=90^0\)

=>AB\(\perp\)BM

 

8 tháng 1

bạn cho mình hình vẽ được không ạ 

a: XétΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

mà AD là tia phân giác

nên AD là đường cao

b: Xét ΔABE và ΔACF có 

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)

BE=CF

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

19 tháng 12 2021

a: Xét ΔADB và ΔADC có 

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC

24 tháng 5 2021

a)xét ΔABE và ΔADE có:

AE là cạnh chung

\(\widehat{DAE}=\widehat{BAE}\)(AE là tia phân giác của \(\widehat{BAD}\))

AD=AB(gt)

⇒ ΔABE=ΔADE(c-g-c)

b)gọi I là giao điểm của AE và BD ta được:

xét ΔADI và ΔABI có:

AI là cạnh chung

\(\widehat{DAI}=\widehat{BAI}\)(AI là tia phân giác của \(\widehat{BAD}\))

AD=AB(gt)

⇒ΔADI=ΔABI(c-g-c)

.ID=IB(2 cạnh tương ứng)(1)

    .\(\widehat{DIA}=\widehat{BIA}\)(2 góc tương ứng)(2)

Mà \(\widehat{DIA}+\widehat{BIA}=180^o\)(2 góc kề bù)(3)

Từ (2) và (3) ⇒\(\widehat{DIA}=\widehat{BIA}=\dfrac{180^o}{2}=90^o\)(4)

Từ (1) và (4) ⇒AE là trung trực của BD(đ.p.c.m)

c)xét ΔEBF có:EF là cạnh huyền⇒EF>EB

Mà DE=BE

⇒DE<EF(đ.p.cm)

d)ta có:

vì ΔABE=ΔADE ⇒\(\widehat{EBA}=\widehat{EDA}=90^o\)

xét ΔCDE và ΔFBE có:

\(\widehat{EBF}=\widehat{EDC}=90^o\)

\(\widehat{CED}=\widehat{FEB}\)(2 góc đối đỉnh)

ED=EB( ΔABE=ΔADE)

⇒ ΔCDE=ΔFBE(g-c-g)

⇒CE=EF(2 cạnh tương ứng)

⇒ΔCEF cân tại E

\(\widehat{CFE}=\dfrac{180^o-\widehat{CEF}}{2}\)

vì ΔABE=ΔADE⇒ED=EB(2 cạnh tương ứng)

⇒ΔEDB cân tại E

\(\widehat{EDB}=\dfrac{180^o-\widehat{DEB}}{2}\)

Mà \(\widehat{DEB}=\widehat{CEF}\)(2 góc đối đỉnh)

\(\widehat{CFE}=\widehat{BDE}\)

⇒CF//BD

Mà AG⊥BD

⇒AG⊥CF(đ.p.cm)

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó:ΔABD=ΔACD

b: Xét ΔADM vuông tại M và ΔADN vuông tại N có

AD chung

\(\widehat{DAM}=\widehat{DAN}\)

DO đó: ΔADM=ΔADN

Suy ra: DM=DN

hay ΔDMN cân tại D

c: Ta có: AM=AN

DM=DN

Do đó: AD là đường trung trực của MN

hay AD⊥MN

8 tháng 3 2022

cảm ơn ạ