K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

A B C H

a) Xét tam giác ABH và tam giác ACH có
AB=AC (tam giác ABC cân tại A)

\(\widehat{ABH}=\widehat{ACH}\)(tam giác ABC cân tại A)

BH=HC(H là trung điểm BC)

=> Tam giác ABH = Tam giác ACH (cgc)

b) Vì tam giác ABC cân tại A (gt) và H là trung điểm BC(gt)

=> AH là đường trung tuyến đồng thời là đường cao của tam giác ABC

=> AH vuông góc với BC(đpcm)

9 tháng 3 2020

A C B H E K 1 2

a) Xét t/giác ABH và t/giác ACH

c: AB = AC (gt)

  BH = CH (gt)

  AH: chung

=> t/giác ABH = t/giác ACH (c.c.c)

b) Ta có: t/giác ABH = t/giác ACH (cmt)

=> \(\widehat{AHB}=\widehat{AHC}\)(2 góc t/ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(kề bù)

=> \(\widehat{AHB}=\widehat{AHC}=90^0\)

=> AH \(\perp\)BC

c) Ta có: BH = CH = 1/BC = 1/2.6 = 3 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABH vuông tại H, ta có:

AB2 = AH2 + BH2 => AH2 = 52 - 32 = 16

=> AH = 4 (cm)

d) Ta có: t/giác AHB = t/giác AHC (cmt)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng)

Xét t/giác AHE và t/giác AHK

có: \(\widehat{A_1}=\widehat{A_2}\)(cmt)

  AH : chung

\(\widehat{AEH}=\widehat{AKH}=90^0\)(gt)

=> t/giác AHE = t/giác AHK (ch - gn)

=> HE = HK (2 cạnh t/ứng)

e) Ta có: t/giác AHE = t/giác AHK (cmt)

=> AE = AK (2 cạnh t/ứng)

=> t/giác AEK cân tại A

=> \(\widehat{AEK}=\widehat{AKE}=\frac{180^0-\widehat{A}}{2}\)(1)

T/giác ABC cân tại A

=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AEK}=\widehat{B}\)

Mà 2  góc này ở vị trí đồng vị

=> EK // BC

27 tháng 6 2020

a, xét tam giác AHB và tg AHC có : ^AHC = ^AHB = 90

AB = AC do tg ABC cân tại A (gt)

^ABC = ^ACB do tg ABC ... 

=> tg AHB = tg AHC (ch-gn)

b, tg ABC cân tại A (Gt) mà có AH là đường cao   (1)

=> AH đồng thời là đường trung tuyến

=> H là trung điểm của BC 

=> BH = 1/2BC = 6 cm

tg AHB vuông tại H (gt) => AB^2 = AH^2 + HB^2 (ĐL pytago)

AB = 10 (gt)

=> AH = 8 do AH > 0

c,   (1) => AH đồng thời là pg của ^BAC (đl)

=> ^CAH = ^BAH (đn)

có HE // AC (gt) ; ^CAH slt ^AHE => ^CAH = ^AHE (đl)

=> ^BAH = ^AHE 

=> tg AHE cân tại E (dh)

26 tháng 6 2020

Trả lời phần d thôi nhé

26 tháng 6 2020

I A B C H E F

a, Vì △ABC cân tại A => AB = AC và ABC = ACB

Xét △BAH và △CAH cùng vuông tại H

Có: AH là cạnh chung

      AB = AC (cmt)

=> △BAH = △CAH (ch-cgv)

b, Vì △BAH = △CAH (cmt)

=> BH = CH (2 cạnh tương ứng)

mà BH + CH = BC

=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2 = 102 - 62 = 64

=> AH = 8 (cm)

c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)

Mà ∠HAC = ∠HAB (△CAH = △BAH)

=> ∠AHE = ∠HAB  => ∠AHE = ∠HAE 

=> △AHE cân tại E

d, Gọi { I } = EH ∩ BF

Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)

Mà ∠ABC = ∠ACB (cmt)

=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH

Mà EA = HE (△AHE cân tại E)

=> EA = BE 

Xét △BAH có: E là trung điểm AB (EA = BE)  => HE là đường trung tuyến

F là trung điểm AH => BF là đường trung tuyến 

EH ∩ BF = { I } 

=> I là trọng tâm của △BAH

\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)

Xét △BHI có: BI + HI > BH (bđt △)

\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)

\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)

\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)

26 tháng 6 2020

trả lời phần d thôi nhé

26 tháng 6 2020

c)\(\Delta\)BHA vuông tại A 

=> ^ABH + ^BAH = 90 độ 

mà ^BHE +^EHA = 90 độ 

mà ^BAH = ^EHA  ( vì  \(\Delta\)AEH cân  tại E) 

=> ^ABH = ^BHE =>  \(\Delta\)BEH cân tại E

Gọi K là trung điểm BH => EK vuông BH 

vì \(\Delta\)AEH cân => EF vuông AH 

=> \(\Delta\)EKH = \(\Delta\)HFE => EF = KH = 1/2 BH = 1/4 BC 

Ta có: \(\Delta\)EFH vuông tại F => EH > EF = 1/4 BC 

\(\Delta\)BFH vuông tại H => BF >  BH = 1/2 BC

=> BF + HE > 1/4 BC + 1/2 BC = 3/4 BC

17 tháng 12 2021

a: Xét ΔABH và ΔACH có 

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH