K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
2 tháng 11 2016

2 a) x2 + 4x + 5

= x2 + 2.x.2 + 22 + 1

=(x + 2)2 +1

vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x

suy ra A luôn lớn hơn hoặc bằng 1

dấu '=' xảy ra khi x+2=0 suy ra x=-2

vậy GTNN của A là 1 khi x= -2

b)x2 + y2 - 4x +6y +13=0

(x2 - 4x +4)+(y2 + 6y +9)=0

(x-2)2 + (y+3)2 =0

(x - 2)2 lớn hơn hoặc bằng 0 với mọi x

(y+3)2 lớn hơn hoặc bằng 0 với mọi y

nên để (x-2)2 + (y+3)2 =0

thì x-2=0 và y+3=0

x=2; y= -3

 

10 tháng 1 2018

Do đa thức chia có bậc 2

nên đa thức dư là nhị thức bậc nhất

Đặt đa thức dư là \(ax+b\)

Đa thức thương là \(Q_{\left(x\right)}\)

\(\Rightarrow x+x^5+x^{10}+x^{20}=\left(x^2-1\right)Q_{\left(x\right)}+ax+b\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)Q_{\left(x\right)}+ax+b\)

Đẳng thức trên luôn đúng \(\forall x\)

nên lần lượt cho \(x=1;x=-1\)

\(\text{Ta được : }\left\{{}\begin{matrix}a+b=4\\b-a=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{4-0}{2}\\b=\dfrac{4+0}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\)

\(\Rightarrow ax+b=2x+2\)

Vậy số dư trong phép chia \(f_{\left(x\right)};g_{\left(x\right)}\)

là \(2x+2\)

2 tháng 11 2021

a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)

b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)

Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)

2 tháng 11 2021

https://meet.google.com/zvs-pdqd-skj?authuser=0&hl=vi. vào link ik

23 tháng 12 2017

a) 8x(x-2013)-(x-2013)=0

\(\Leftrightarrow\left(x-2013\right)\left(8x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2013\\x=\dfrac{1}{8}\end{matrix}\right.\)

23 tháng 12 2017

8x(x - 2013) - x + 2013 = 0

⇔ 8x(x - 2013) - (x - 2013) = 0

⇔ (x - 2013)(8x - 1) = 0

⇔ x - 2013 = 0 hoặc 8x - 1 = 0

⇔ x = 2013 hoặc x = \(\dfrac{1}{8}\)