Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1) x f(x)=(x+2) x f(x+3)
Thay x=1 : (1-1) x f(1) = (1+2) x f(1+3)
=>f(4)=0
Thay x=-2 :(-2-1) x f(-2) = (-2+2) x f(-2+3)
=>f(-2)=0
Thay x=4(thay bang 0 vi f(4)=0).....
Thay x=7 (ket qua o tren)
Thay x=10 kq o tren
vay 5 nghiem la 1;2;4;7;10
mk chi tom tat thoi nha chuc bn hoc tot
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
a) Ta có:
VT = |x + 1| + |x + 2| + |2x - 3| \(\ge\)|x + 1 + x + 2| + |3 - 2x| = |2x + 3| + |3 - 2x| \(\ge\)|2x + 3 + 3 - 2x| = 6
VP = 6
Dấu "=" xảy ra<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)\ge0\\\left(2x+3\right)\left(3-2x\right)\ge0\end{cases}}\) => \(\orbr{\begin{cases}x\ge-1\\x\le-2\end{cases}}\)và \(-\frac{3}{2}\le x\le\frac{3}{2}\)
<=> \(-1\le x\le\frac{3}{2}\)
b) Ta có: VT = |x + 1| + |x - 2| + |x - 3| + |x - 5| = (|x + 1| + |5 - x|) + (|x - 2| + |3 - x|) \(\ge\)|x + 1 + 5 - x| + |x - 2 + 3 - x| = |6| + |1| = 7
VP = 7
Dấu "=" xảy ra<=> \(\hept{\begin{cases}\left(x+1\right)\left(5-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{cases}}\) <=> \(\hept{\begin{cases}-1\le x\le5\\2\le x\le3\end{cases}}\) <=> \(2\le x\le3\)
a. ta có :
\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm
b.ta có
\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm
Ta có:
\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)
\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)